fl4health.preprocessing.autoencoders.dim_reduction module¶
- class AeProcessor(checkpointing_path, device=device(type='cpu'))[source]¶
Bases:
AutoEncoderProcessing
Transformer processor to encode the data using basic autoencoder.
- class AutoEncoderProcessing(checkpointing_path, device=device(type='cpu'))[source]¶
Bases:
ABC
- __init__(checkpointing_path, device=device(type='cpu'))[source]¶
Abstract class for processors that work with a pre-trained and saved autoencoder model.
- Parameters:
checkpointing_path (Path) – Path to the saved model.
device (torch.device, optional) – Device indicator for where to send the model and data samples
preprocessing. (for)
- class CvaeFixedConditionProcessor(checkpointing_path, condition, device=device(type='cpu'), return_mu_only=False)[source]¶
Bases:
AutoEncoderProcessing
Transformer processor to encode the data using CVAE encoder with client-specific condition.
- __init__(checkpointing_path, condition, device=device(type='cpu'), return_mu_only=False)[source]¶
Transformer processor to encode the data using a CVAE encoder with a fixed condition.
- Parameters:
checkpointing_path (Path) – Path to the saved model.
condition (torch.Tensor) – Fixed condition tensor.
device (torch.device, optional) – Device indicator for where to send the model and data samples
preprocessing. (for)
return_mu_only (bool, optional) – If true, only mu is returned. Defaults to False.
- class CvaeVariableConditionProcessor(checkpointing_path, device=device(type='cpu'), return_mu_only=False)[source]¶
Bases:
AutoEncoderProcessing
- __init__(checkpointing_path, device=device(type='cpu'), return_mu_only=False)[source]¶
Transformer processor to encode the data using CVAE encoder with variable condition, that is each data sample can have a specific condition.
- Parameters:
checkpointing_path (Path) – Path to the saved model.
device (torch.device, optional) – Device indicator for where to send the model and data samples
preprocessing. (for)
return_mu_only (bool, optional) – If true, only mu is returned. Defaults to False.
- class VaeProcessor(checkpointing_path, device=device(type='cpu'), return_mu_only=False)[source]¶
Bases:
AutoEncoderProcessing
- __init__(checkpointing_path, device=device(type='cpu'), return_mu_only=False)[source]¶
Transformer processor to encode the data using VAE encoder.
- Parameters:
checkpointing_path (Path) – Path to the saved model.
device (torch.device, optional) – Device indicator for where to send the model and data samples
preprocessing. (for)
return_mu_only (bool, optional) – If true, only mu is returned. Defaults to False.