fl4health.feature_alignment.string_columns_transformer module¶
- class TextColumnTransformer(transformer)[source]¶
- Bases: - BaseEstimator,- TransformerMixin- __init__(transformer)[source]¶
- The purpose of this class is to enable the application of text feature transformers from sklearn to a single-column pandas dataframe, which is not supported in the first place. - Parameters:
- transformer (TextFeatureTransformer) – Transformer to be applied 
 
 - fit(x, y=None)[source]¶
- Fit the transformer to the provided dataframe. The dataframe should have a single string column The transformer is fit on the text from the single columns in the - xdataframe.- Parameters:
- x (pd.DataFrame) – Column on which to fit the transformer 
- y (pd.DataFrame | None, optional) – Not used. Defaults to None. 
 
- Returns:
- The fit transformer 
- Return type:
 
 - set_fit_request(*, x: bool | None | str = '$UNCHANGED$') TextColumnTransformer¶
- Request metadata passed to the - fitmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- xstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - xparameter in- fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_transform_request(*, x: bool | None | str = '$UNCHANGED$') TextColumnTransformer¶
- Request metadata passed to the - transformmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- transformif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- transform.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- xstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - xparameter in- transform.
 
- Returns:
- selfobject
- The updated object. 
 
 
 
- class TextMulticolumnTransformer(transformer)[source]¶
- Bases: - BaseEstimator,- TransformerMixin- __init__(transformer)[source]¶
- The purpose of this class is to enable the application of text feature transformers from sklearn to multiple string columns, which is not supported in the first place. - Parameters:
- transformer (TextFeatureTransformer) – Transformer to be applied 
 
 - fit(x, y=None)[source]¶
- Fit the transformer to the provided dataframe. The dataframe should have multiple string columns The transformer is fit on the appended text from all columns in the - xdataframe.- Parameters:
- x (pd.DataFrame) – Columns on which to fit the transformer 
- y (pd.DataFrame | None, optional) – Not used. Defaults to None. 
 
- Returns:
- The fit transformer 
- Return type:
 
 - set_fit_request(*, x: bool | None | str = '$UNCHANGED$') TextMulticolumnTransformer¶
- Request metadata passed to the - fitmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- xstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - xparameter in- fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_transform_request(*, x: bool | None | str = '$UNCHANGED$') TextMulticolumnTransformer¶
- Request metadata passed to the - transformmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- transformif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- transform.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- xstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - xparameter in- transform.
 
- Returns:
- selfobject
- The updated object.