mmlearn.modules.encoders.clip.HFCLIPTextEncoderWithProjection¶
- class HFCLIPTextEncoderWithProjection(model_name_or_path, pretrained=True, use_all_token_embeddings=False, freeze_layers=False, freeze_layer_norm=True, peft_config=None, model_config_kwargs=None)[source]¶
Bases:
Module
Wrapper around the
CLIPTextModelWithProjection
from HuggingFace.- Parameters:
model_name_or_path (str) – The huggingface model name or a local path from which to load the model.
pretrained (bool, default=True) – Whether to load the pretrained weights or not.
use_all_token_embeddings (bool, default=False) – Whether to use all token embeddings for the text. If
False
the first token embedding will be used.freeze_layers (Union[int, float, list[int], bool], default=False) – Whether to freeze layers of the model and which layers to freeze. If
True
, all model layers are frozen. If it is an integer, the firstN
layers of the model are frozen. If it is a float, the firstN
percent of the layers are frozen. If it is a list of integers, the layers at the indices in the list are frozen.freeze_layer_norm (bool, default=True) – Whether to freeze the layer normalization layers of the model.
peft_config (Optional[PeftConfig], optional, default=None) – The configuration from the peft library to use to wrap the model for parameter-efficient finetuning.
- Warns:
UserWarning – If both
peft_config
andfreeze_layers
are set. Thepeft_config
will override thefreeze_layers
setting.
Methods
Attributes