mmlearn.hf_utils¶
Utilities for loading components from the HuggingFace transformers library.
Functions
- load_huggingface_model(model_type, model_name_or_path, load_pretrained_weights=True, get_model_attr=None, model_config_kwargs=None, config_type=None)[source]¶
Load a model from the HuggingFace
transformers
library.- Parameters:
model_type (Type[_BaseAutoModelClass]) – The model class to instantiate e.g.
transformers.AutoModel
.model_name_or_path (str) – The model name or path to load the model from.
load_pretrained_weights (bool, optional, default=True) – Whether to load the pretrained weights or not. If false, the argument
pretrained_model_name_or_path
will be used to get the model configuration and the model will be initialized with random weights.get_model_attr (Optional[str], optional, default=None) – If not None, the attribute of the model to return. For example, if the model is an
transformers.AutoModel
andget_model_attr='encoder'
, the encoder part of the model will be returned. IfNone
, the full model will be returned.model_config_kwargs (Optional[dict[str, Any]], optional, default=None) – Additional keyword arguments to pass to the model configuration. The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled by the
return_unused_kwargs
keyword parameter.config_type (Optional[Type[PretrainedConfig]], optional, default=None) – The class of the configuration to use. If None,
transformers.AutoConfig
will be used.
- Returns:
The instantiated model.
- Return type:
- load_huggingface_model(model_type, model_name_or_path, load_pretrained_weights=True, get_model_attr=None, model_config_kwargs=None, config_type=None)[source]¶
Load a model from the HuggingFace
transformers
library.- Parameters:
model_type (Type[_BaseAutoModelClass]) – The model class to instantiate e.g.
transformers.AutoModel
.model_name_or_path (str) – The model name or path to load the model from.
load_pretrained_weights (bool, optional, default=True) – Whether to load the pretrained weights or not. If false, the argument
pretrained_model_name_or_path
will be used to get the model configuration and the model will be initialized with random weights.get_model_attr (Optional[str], optional, default=None) – If not None, the attribute of the model to return. For example, if the model is an
transformers.AutoModel
andget_model_attr='encoder'
, the encoder part of the model will be returned. IfNone
, the full model will be returned.model_config_kwargs (Optional[dict[str, Any]], optional, default=None) – Additional keyword arguments to pass to the model configuration. The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled by the
return_unused_kwargs
keyword parameter.config_type (Optional[Type[PretrainedConfig]], optional, default=None) – The class of the configuration to use. If None,
transformers.AutoConfig
will be used.
- Returns:
The instantiated model.
- Return type: