mmlearn.datasets.sunrgbd¶
SUN RGB-D dataset.
Functions
- convert_depth_to_disparity(depth_file, intrinsics_file, sensor_type, min_depth=0.01, max_depth=50)[source]¶
Load depth file and convert to disparity.
- Parameters:
depth_file (str) – Path to the depth file.
intrinsics_file (str) – Intrinsics_file is a txt file supplied in SUNRGBD with sensor information Can be found at the path: os.path.join(root_dir, room_name, “intrinsics.txt”)
sensor_type (str) – Sensor type of the depth file.
min_depth (float, default=0.01) – Minimum depth value to clip the depth image.
max_depth (int, default=50) – Maximum depth value to clip the depth image.
- Returns:
Disparity image from the depth image following the ImageBind implementation.
- Return type:
Classes
SUN RGB-D dataset. |
- class SUNRGBDDataset(root_dir, split='train', return_type='disparity', rgb_transform=None, depth_transform=None)[source]¶
SUN RGB-D dataset.
- Parameters:
root_dir (str) – Path to the root directory of the dataset.
split ({"train", "test"}, default="train") – Split of the dataset to use.
return_type ({"disparity", "image"}, default="disparity") – Return type of the depth images. If “disparity”, the depth images are converted to disparity similar to the ImageBind implementation. Otherwise, return the depth image as a 3-channel image.
rgb_transform (Callable[[PIL.Image], torch.Tensor], default=None) – A callable that takes in an RGB PIL image and returns a transformed version of the image as a PyTorch tensor.
depth_transform (Callable[[PIL.Image], torch.Tensor], default=None) – A callable that takes in a depth PIL image and returns a transformed version of the image as a PyTorch tensor.
References
- convert_depth_to_disparity(depth_file, intrinsics_file, sensor_type, min_depth=0.01, max_depth=50)[source]¶
Load depth file and convert to disparity.
- Parameters:
depth_file (str) – Path to the depth file.
intrinsics_file (str) – Intrinsics_file is a txt file supplied in SUNRGBD with sensor information Can be found at the path: os.path.join(root_dir, room_name, “intrinsics.txt”)
sensor_type (str) – Sensor type of the depth file.
min_depth (float, default=0.01) – Minimum depth value to clip the depth image.
max_depth (int, default=50) – Maximum depth value to clip the depth image.
- Returns:
Disparity image from the depth image following the ImageBind implementation.
- Return type: