mmlearn.conf.MMLearnConf¶
- class MMLearnConf(defaults=<factory>, experiment_name='???', job_type=JobType.train, seed=None, datasets=<factory>, dataloader=<factory>, task='???', trainer=<factory>, tags=<factory>, resume_from_checkpoint=None, strict_loading=True, torch_compile_kwargs=<factory>, hydra=<factory>)[source]¶
Bases:
object
Top-level configuration for mmlearn experiments.
Methods
Attributes
-
dataloader:
DataLoaderConf
¶ Configuration for the dataloaders.
-
datasets:
DatasetConf
¶ Configuration for the datasets.
-
experiment_name:
str
= '???'¶ Name of the experiment. This must be specified for any experiment to run.
-
hydra:
HydraConf
¶ Hydra configuration.
-
seed:
Optional
[int
] = None¶ Seed for the random number generators. This is set for Python, Numpy and PyTorch, including the workers in PyTorch Dataloaders.
-
strict_loading:
bool
= True¶ Whether to strictly enforce loading of model weights i.e. strict=True in
load_from_checkpoint()
.
-
torch_compile_kwargs:
dict
[str
,Any
]¶ Configuration for torch.compile. These are essentially the same as the arguments for
torch.compile()
.
-
dataloader: