Source code for fairsenseai.app

from typing import Optional, Tuple
from pathlib import Path

import gradio as gr

from fairsenseai.analysis.ai_safety_dashboard import display_ai_safety_dashboard
from fairsenseai.analysis.bias import (
    analyze_image_for_bias,
    analyze_images_batch,
    analyze_text_csv,
    analyze_text_for_bias,
)
from fairsenseai.analysis.risk_assessment import analyze_text_for_risks
from fairsenseai.runtime import get_runtime

[docs] def start_server( make_public_url: Optional[bool] = True, allow_filesystem_access: Optional[bool] = True, prevent_thread_lock: Optional[bool] = False, launch_browser_on_startup: Optional[bool] = False, ) -> None: """ Starts the Gradio server with multiple tabs for text analysis, image analysis, batch processing, AI governance insights, and an AI safety risks dashboard. Parameters ---------- make_public_url Whether to make the server publicly accessible. allow_filesystem_access Whether to allow filesystem access for file uploads, required to save results prevent_thread_lock Whether to prevent thread lock issues. launch_browser_on_startup Whether to launch the browser on server startup. Returns ------- None Example ------- >>> start_server() """ # Initialize the runtime get_runtime(allow_filesystem_access=allow_filesystem_access) script_dir = Path(__file__).resolve().parent ui_dir = script_dir / "ui" with open(ui_dir / "home.html") as home_file: home = home_file.read() with open(ui_dir / "footer.html") as footer_file: footer = footer_file.read() with open(ui_dir / "about.html") as page_file: about = page_file.read() demo = gr.Blocks() with demo: gr.HTML(home) gr.HTML(footer) with demo.route("Bias Identification", "/bias"): gr.Markdown("# Bias Identification", elem_classes="page-title") with gr.Tabs(): # --- Text Analysis Tab --- with gr.TabItem("πŸ“„ Text Analysis"): with gr.Row(): text_input = gr.Textbox( lines=5, placeholder="Enter text to analyze for bias", label="Text Input", ) # Summarizer toggle for text analysis use_summarizer_checkbox_text = gr.Checkbox( value=True, label="Use Summarizer?", ) analyze_button = gr.Button("Analyze") # Examples gr.Examples( examples=[ "Some people say that women are not suitable for leadership roles.", "Our hiring process is fair and unbiased, but we prefer male candidates " "for their intellect level.", ], inputs=text_input, label="Try some examples", ) highlighted_text = gr.HTML(label="Highlighted Text") detailed_analysis = gr.HTML(label="Detailed Analysis") analyze_button.click( analyze_text_for_bias, inputs=[text_input, use_summarizer_checkbox_text], outputs=[highlighted_text, detailed_analysis], show_progress=True, ) # --- Image Analysis Tab --- with gr.TabItem("πŸ–ΌοΈ Image Analysis"): with gr.Row(): image_input = gr.Image(type="pil", label="Upload Image") # Summarizer toggle for image analysis use_summarizer_checkbox_img = gr.Checkbox( value=True, label="Use Summarizer?", ) analyze_image_button = gr.Button("Analyze") # Example images gr.Markdown( """ ### Example Images You can download the following images and upload them to test the analysis: - [Example 1](https://media.top1000funds.com/wp-content/uploads/2019/12/iStock-525807555.jpg) - [Example 2](https://ichef.bbci.co.uk/news/1536/cpsprodpb/BB60/production/_115786974_d6bbf591-ea18-46b9-821b-87b8f8f6006c.jpg) """ ) highlighted_caption = gr.HTML(label="Highlighted Text and Caption") image_analysis = gr.HTML(label="Detailed Analysis") analyze_image_button.click( analyze_image_for_bias, inputs=[image_input, use_summarizer_checkbox_img], outputs=[highlighted_caption, image_analysis], show_progress=True, ) # --- Batch Text CSV Analysis Tab --- with gr.TabItem("πŸ“‚ Batch Text CSV Analysis"): with gr.Row(): csv_input = gr.File( label="Upload Text CSV (with 'text' column)", file_types=[".csv"], ) # Summarizer toggle for batch text CSV use_summarizer_checkbox_text_csv = gr.Checkbox( value=True, label="Use Summarizer?", ) analyze_csv_button = gr.Button("Analyze CSV") csv_results = gr.HTML(label="CSV Analysis Results") analyze_csv_button.click( analyze_text_csv, inputs=[csv_input, use_summarizer_checkbox_text_csv], outputs=csv_results, show_progress=True, ) # --- Batch Image Analysis Tab --- with gr.TabItem("πŸ—‚οΈ Batch Image Analysis"): with gr.Row(): images_input = gr.File( label="Upload Images (multiple allowed)", file_types=["image"], type="filepath", file_count="multiple", ) # Summarizer toggle for batch image use_summarizer_checkbox_img_batch = gr.Checkbox( value=True, label="Use Summarizer?", ) analyze_images_button = gr.Button("Analyze Images") images_results = gr.HTML(label="Image Batch Analysis Results") analyze_images_button.click( analyze_images_batch, inputs=[images_input, use_summarizer_checkbox_img_batch], outputs=images_results, show_progress=True, ) gr.HTML(footer) with demo.route("Risk Management", "/risk"): gr.Markdown("# Risk Management", elem_classes="page-title") with gr.Tabs(): with gr.TabItem("πŸ“„ Risk Identification and Mitigation"): with gr.Row(): text_input = gr.Textbox( lines=5, placeholder="Enter text to analyze for bias", label="Text Input", scale=4, ) analyze_button = gr.Button("Analyze Risks", scale=1) # Examples gr.Examples( examples=[ "Our team is creating a healthcare chatbot that analyzes patient symptoms using electronic " "health records. It provides early diagnoses, treatment advice, and can access sensitive " "patient information. We must handle data security, privacy, and potential misdiagnoses.", "We’re building an AI-powered facial recognition tool to improve workplace security. " "It will monitor employee entrances, verify identities in real-time, and store face embeddings." " The system must comply with privacy regulations and handle sensitive biometrics.", ], inputs=text_input, label="Try some examples", ) csv_output_file = gr.File( label="Risks and Outcomes Traceability Matrix" ) highlighted_text = gr.HTML(label="Highlighted Text") analyze_button.click( analyze_text_for_risks, inputs=text_input, outputs=[highlighted_text, csv_output_file], show_progress=True, ) gr.Markdown( """ **Useful References:** - [MIT AI Risk Repository](https://airisk.mit.edu/) - [NIST AI Risk Management Framework](https://www.nist.gov/itl/ai-risk-management-framework) """ ) # --- AI Safety Risks Dashboard --- with gr.TabItem("πŸ“Š AI Safety Risks Dashboard"): fig_bar, fig_pie, fig_scatter, df = display_ai_safety_dashboard() gr.Markdown("### Percentage Distribution of AI Safety Risks") gr.Plot(fig_bar) # If you'd like to show the pie chart, you can uncomment: # gr.Markdown("### Proportion of Risk Categories") # gr.Plot(fig_pie) gr.Markdown("### Severity vs. Likelihood of AI Risks") gr.Plot(fig_scatter) gr.Markdown("### AI Safety Risks Data") gr.Dataframe(df) gr.HTML(footer) with demo.route("About FairSense-AI", "/about"): gr.Markdown("# About FairSense-AI", elem_classes="page-title") gr.HTML(value=about) gr.HTML(footer) demo.queue().launch( share=make_public_url, prevent_thread_lock=prevent_thread_lock, inbrowser=launch_browser_on_startup, )
if __name__ == "__main__": start_server()