Quickstart Code ExamplesΒΆ

  1. Text Bias Analysis

    from fairsenseai.analysis.bias import analyze_text_for_bias
    
    # Example input text to analyze for bias
    text_input = "Men are naturally better at decision-making, while women excel at emotional tasks."
    
    # Analyze the text for bias
    highlighted_text, detailed_analysis = analyze_text_for_bias(text_input, use_summarizer=True)
    
    # Print the analysis results
    print("Highlighted Text:", highlighted_text)
    print("Detailed Analysis:", detailed_analysis)
    
  2. Image Bias Analysis

    import requests
    from PIL import Image
    from io import BytesIO
    from IPython.display import display, HTML
    from fairsenseai.analysis.bias import analyze_image_for_bias
    
    # URL of the image to analyze.
    image_url = "https://ichef.bbci.co.uk/news/1536/cpsprodpb/BB60/production/_115786974_d6bbf591-ea18-46b9-821b-87b8f8f6006c.jpg"
    
    # Fetch and load the image from the URL.
    response = requests.get(image_url)
    if response.status_code == 200:
       image = Image.open(BytesIO(response.content))
       small_image = image.copy()
       small_image.thumbnail((200, 200))
    
       # Display the resized image and analyze for bias.
       print("Original Image (Resized):")
       display(small_image)
       highlighted_caption, image_analysis = analyze_image_for_bias(image, use_summarizer=True)
    
       # Print and display analysis results.
       print("\nHighlighted Caption:\n", highlighted_caption)
       print("\nImage Analysis:\n", image_analysis)
       if highlighted_caption:
          display(HTML(highlighted_caption))
       else:
          print(f"Failed to fetch the image. Status code: {response.status_code}")
    
  3. AI Risk Management

    from fairsenseai.analysis.risk_assessment import analyze_text_for_risks
    
    # Get risk assessment and mitigation strategies on the given scenario
    scenario = "We're developing a facial recognition system for public spaces"
    highlighted_risks, csv_path = analyze_text_for_risks(
       scenario,
       top_k_risk=3,
       top_k_ai_rmf=2
       )
    
    # Print the result and saved CSV path
    print("Risks:", highlighted_risks)
    print(f"Results saved to: {csv_path}")
    
  4. Launch the Interactive Application

    from fairsenseai.app import start_server
    
    # Launch the Gradio application (will open in the browser)
    start_server()