florist.api.servers.utils module¶
Utilities functions and definitions for starting a server.
- fit_config(batch_size, local_epochs, current_server_round)[source]¶
Return a dictionary used to configure the server’s fit function.
- Parameters:
- Return type:
- Returns:
(Dict[str, int]) A dictionary to the used at the config for the fit function.
- get_server(model, reporters, fit_config=<function fit_config>, n_clients=2, batch_size=8, local_epochs=1)[source]¶
Return a server instance with FedAvg aggregation strategy.
- Parameters:
model (
Module
) – (torch.nn.Model) the model the server and clients will be using.fit_config (
Callable
[[int
,int
,int
],Dict
[str
,int
]]) – (Callable[[int, int, int], Dict[str, int]]) the function to configure the fit method.n_clients (
int
) – (int) the number of clients that will participate on training. Optional, default is 2.batch_size (
int
) – (int) the size of the batch of samples. Optional, default is 8.local_epochs (
int
) – (int) the number of local epochs the clients will run. Optional, default is 1.reporters (
list
[BaseReporter
]) – (list[fl4health.reporting.base_reporter.BaseReporter]) An optional metrics reporter instance. Default is None.
- Return type:
FlServer
- Returns:
(fl4health.server.base_server.FlServer) An instance of FlServer with FedAvg as strategy.