Technical Report on AI Fairness Data Generation
and Question Answering System

Aravind Narayanan!, Ananya Raval', Sindhuja Chaduvulal,
Karanpal Sekhon!, Amandeep Singh, Shweta Khushu!, Shaina Raza'*

! Vector Institute for Artificial Intelligence, Toronto, Canada

*Corresponding Author

shaina.raza@vectorinstitute.ai

October 27, 2025

Project: https://vectorinstitute.github.io/vector-aixpert/
Code: https://github.com/VectorInstitute/vector-aixpert

Contents
I—Overviewl

2 Repository structure]

13 Controlled image generation|

|4 _Synthetic data generation|

.1 Tmage an generation|
4.2 NLP synthetic scenes and MCQs| oo
4.3 Video generation| oL

[Agentic Data Generation Framework]|

6 Fairness metrics and zero-shot explainability|

|Acknowledgements|

[Licensel

https://vectorinstitute.github.io/vector-aixpert/
https://github.com/VectorInstitute/vector-aixpert

1 Overview

This document summarises the purpose and structure of an experimental framework for studying
bias, fairness and safety in generative Al (GenAl) systems. The framework is designed to generate
synthetic multimodal data: text, images and videos, under controlled conditions so that researchers
can examine how models behave when demographic attributes or risk factors are varied. The
codebase provides utilities to build baseline examples and matched “controlled” variations where
instructions about demographic diversity and fairness are made explicit. The build instructions
describe how to set up the project using the uv package manager and how to install core and
development dependencies. Figure [I] depicts the main data-generation pipeline.

Input & Orchestration

Prompts & Config Agent Orchestrator
(Baseline vs Controlled) (CrewAl)
Prompt Generation NLP Scenes & MCQs
(GPT-40 / Gemini / Grok) (GPT-4o0 pipeline)

Content Generation

> N
Image Generation
(DALLE-3 / Imagen / FLUX / SDXL / Grok-2)
Video Generation
(Veo / Gemini)

Metadata Generation VQA Generation
(age, gender, ethnicity) (questions from images)
I

Post-processing

- Faimess Metrics & Explainability
CSV / JSONL Logging & Analysis Artifacts }—{ o o 15

Logging & Evaluation

Figure 1: Layered data pipeline for multimodal content generation and evaluation from input &
orchestration to fairness metrics. Abbreviations: SPD = Statistical Parity Difference; EOpp = Equal
Opportunity; IG = Integrated Gradients.

2 Repository structure

The project root contains configuration files (e.g., pyproject.toml), a licence and contribution
guidelines. Most of the code lives under src/aixpert. Table [I| summarises the major modules and
their purpose.

Module / Folder

Description

Relevant Files

src/aixpert/controlled_images

Command-line tool for generating base-
line and controlled images to study
demographic bias. It wraps multiple
image providers and logs metadata and
checkpoints.

main.py, image_utils.py, prompts.py,
utils.py, configs/img_gen_config.yaml

src/aixpert/data_generation
/synthetic_data_generation/
images

Scripts for generating synthetic
image prompts, images, and vi-
sual-question—answer (VQA) pairs.
Designed to create domain- and risk-
specific data sets.

main.py, system_utils.py,
prompt_generation.py, dalle_3.py

, gemini.py, vqa_generation.py,
csr_vqa_generation.py, system_prompt
.py, utils.py

src/aixpert/data_generation/
synthet ic_data_generation/nlp

Pipeline for generating textual scenes
and multiple-choice questions (MCQs)
using OpenAl GPT-40 models. Uses
domain- and risk-specific templates and
schemas.

main.py, prompt_gen_utils.py,
prompt_template.py, schema.py

src/aixpert/data_generation
/synthetic_data_generation/
videos

Code for generating short videos via
Google’s Veo/Gemini models. Includes
checkpoint logic and utilities for saving
multiple videos per prompt.

veo.py, utils.py

src/aixpert/data_generation/
agent_pipeline

Orchestrates multi-step workflows for
prompt creation, image synthesis, and
metadata generation using CrewAI.

agent.py, crew_orchestrate.py,
custom_l1lm.py, load_text_llm.py, flows/
image_generation_flow.py

src/aixpert/IE_Social LLM

Contains scripts for computing group-
fairness metrics and zero-shot classifica-
tion with integrated gradients.

scripts/fairness_metrics.py, scripts/
1lm_zero_shot_explain.py

docs

Documentation resources.

README.md, CONTRIBUTING.md, index.md,
user_guide.md,

Table 1: Major modules and their purpose. Descriptions summarise the high-level functionality of

each component.

3 Controlled image generation

The controlled_images module provides a unified command-line interface to generate matched
pairs of images. It defines several categories: CEO, nurse, software engineer, teacher and athlete.
For each category there is a short baseline description (e.g., “A CEO in an office”) and a longer
controlled description that instructs the model to ensure demographic diversity across gender and
ethnicity and to avoid stereotypes. These descriptions are used to produce pairs of images: one
generic and one fairness-aware. Key elements of the controlled image pipeline include:

e Image generators. Image generators wraps several providers. It implements helper functions
to call FLUX.1-dev [4], Google Imagen [3] via the Gemini API, OpenAI’s image API (DALL-E 3
and GPT-Image 1) [1], xAT’s Grok-2 image API [?], and Stable Diffusion XL Turbo [?]. Each
provider returns PNG bytes. A retry decorator adds exponential backoff and multiple attempts,
and helpers support saving PNG files and decoding base64-encoded results.

e Configuration. A YAML file defines global defaults such as the number of samples per
setting, retry behaviour and flush frequency. It lists provider-specific options (e.g., model
names, output directories, environment variables) and allows enabling or disabling providers.
API keys are pulled from the YAML or from environment variables using the decouple library.
Annotations are stored in CSV files in the configured output directory.

e Main script. main.py implements a command-line interface (CLI). It reads the prompts and
configuration, binds the appropriate generator for each provider and iterates over all categories,

baseline/controlled settings and sample indices. For each target it either skips generation if the
file already exists or calls the provider to produce a PNG. It writes results to CSV and uses a
small checkpoint file to resume aborted runs. Users can run python main.py -provider gpt
to generate only DALL-E images or -provider all to generate across all enabled providers.

These components allow researchers to produce matched pairs of images for fairness auditing.
The prompt explicitly instructs the model to depict a person in a realistic scene while ensuring
diverse gender and ethnicity representation, enabling controlled comparisons between the generic
and fairness-aware versions.

4 Synthetic data generation

The framework includes a suite of modular pipelines for generating synthetic multimodal data
encompassing text, images, metadata, and VQA pairs. All components follow a consistent execution
pattern: configuration parameters are loaded from YAML specifications, model credentials are
securely retrieved from environment variables, and structured prompts guide the generation process.
Checkpointing mechanisms ensure that progress is preserved across runs, enabling robust and
resumable execution.

This design promotes scalability, transparency, and reproducibility in synthetic data creation. By
standardizing orchestration across modalities, the framework supports systematic experimentation
and controlled dataset generation for diverse Responsible Al evaluation scenarios.

4.1 Image and VQA generation

The image and visual question answering (VQA) generation module provides a unified framework
for producing multimodal synthetic datasets that combine text-based prompts, generated images,
and associated question—answer pairs. It supports domain- and risk-specific content creation across
areas such as hiring, legal, and healthcare, with configurable parameters controlling risk categories
including bias, toxicity, representation gaps, and security concerns.

The pipeline begins by generating detailed image prompts using large language models, which
are then rendered into images through high-fidelity generative models such as OpenAl’'s DALL-E
and Google’s Gemini. These models enable fine-grained control over quality, style, and composition,
facilitating diverse and demographically balanced visual outputs. The system also produces corre-
sponding VQA pairs that probe ethical, social, and commonsense reasoning aspects of the generated
imagery, enhancing the dataset’s utility for Responsible Al benchmarking.

A single orchestrated interface integrates all stages: prompt creation, image synthesis, metadata
generation, and VQA formulation within a checkpoint-safe, configuration-driven workflow. This
design ensures reproducibility, scalability, and modular extensibility, allowing users to execute
individual stages or full pipelines as needed. Together, these capabilities enable systematic multimodal
data generation for evaluating fairness, robustness, and interpretability in Al systems.

4.2 NLP synthetic scenes and MCQs

The NLP module implements a comprehensive pipeline for generating synthetic textual scenes,
multiple-choice questions (MCQs), and corresponding answers to support Responsible Al evaluation
across diverse domain-risk contexts. The system leverages large language models, such as OpenAl’s

GPT-40 family, to produce structured and contextually grounded content following configurable
domain and risk specifications.

The framework integrates configurable prompt templates and structured output schemas to ensure
consistency and validity across generated data. It supports a range of risk categories—including
bias, toxicity, representation gaps, and security—by guiding model behavior through domain-specific
system prompts. Each generation stage, from scene creation to question formulation and answer
justification, can be executed independently or as part of an end-to-end workflow, allowing flexible
experimentation and control.

Beyond scene and question generation, the pipeline emphasizes robustness and reproducibility
through structured output validation, checkpointing, and automated recovery mechanisms. Gener-
ated MCQs are designed to probe the ethical, social, or safety dimensions of the scenes, with answer
rationales that enhance interpretability and downstream evaluation. Overall, the NLP pipeline
provides a scalable, transparent, and extensible framework for constructing high-quality textual
benchmarks in Responsible AI research.

4.3 Video generation

The videos submodule extends synthetic data generation to video. Its veo.py script uses Google’s
Veo (Gemini) E|m0del to generate short clips. Configuration parameters specify the model variant,
aspect ratio, person generation setting and number of videos per prompt. The script loads prompts
from JSONL files, uses the Gemini API to generate videos and saves them with deterministic
filenames (e.g., hiring_bias_video_1_1.mp4). A checkpoint file records the last processed index
and the names of already generated videos to support resumption. Utility functions implement
exponential-backoff retries and jitter for robustness, manage checkpoints and provide helper routines
for saving videos. Recent releases of Veo emphasise richer native audio, greater narrative control
and enhanced image-to-video capabilities, with features such as reference image guidance, scene
extension and first/last frame control [?].

5 Agentic Data Generation Framework

The agentic data generation framework constitutes a unified system for end-to-end synthetic data
generation, integrating prompt engineering, image synthesis, metadata creation, and optional visual
question answering (VQA) within a coordinated execution architecture. Built upon the CrewAl
orchestration library [?], the framework adopts an agent-based paradigm in which each agent is
defined by a specific role, goal, and model configuration. This design enables modular yet composable
task execution, ensuring coherent coordination across diverse domains and risk categories while
maintaining traceability and control.

CrewAl-driven orchestration allows multiple agents—each powered by a large language model
(LLM) or multimodal generator—to collaborate in a structured workflow. The framework supports
both cloud-hosted and locally deployed models, enabling seamless switching among model families
such as OpenAT’s GPT-4o [6], Google’s Gemini [?], and xAT’s Grok-2 [12] without code-level modifi-
cation. Its configuration-driven structure facilitates scalable experimentation and straightforward
extensibility to new domains or Responsible Al evaluation contexts.

Weo3VideoGenerationAPI

Veo 3 Video Generation API

Through checkpointing, structured outputs, and consistent configuration management, the system
ensures reproducible and resumable generation workflows. Overall, the framework provides a robust,
extensible, and transparent foundation for responsible synthetic data creation, unifying text, image,
and metadata generation under a single agentic and orchestrated pipeline.

6 Fairness metrics and zero-shot explainability

The module contains scripts to evaluate fairness and interpretability [5] of language models on social
tasks:

Group-fairness metrics. fairness_metrics.py computes statistical parity difference (SPD) and
equal-opportunity (EOpp) metrics [§] difference across demographic identities for binary classification.
Given predictions, labels and identity columns, it calculates per-group accuracy, F1, true positive
rate, false positive rate and positive prediction rate. For each identity attribute the script computes
SPD=P(Y =1|A=1)—P(Y =1| A=0) and EOpp difference = TPR(A = 1) — TPR(A = 0).
It also records the worst-case absolute disparity and the worst group accuracy/F1 across identities.
The output is saved into CSV files summarising per-group and per-identity results.

Zero-shot classification with integrated gradients. 1lm_zero_shot_explain.py performs
zero-shot classification of social texts (e.g., toxicity, hate, offence) using a language model such as
DistilGPT-2 [10]. It is designed to be model-agnostic, allowing the use of alternative large language
models, including open-source variants like LLaMA [2] and Mistral [I], as well as closed-source
models such as GPT-4/5 or Gemini.

For each text it constructs a prompt instructing the model to decide whether the text is
toxic/non-toxic (or hateful /not hateful, etc.) and computes the difference in log-probability between
the positive and negative label. The sign of this difference forms the prediction. To interpret the
decision, the script implements integrated gradients: it interpolates between a zero embedding
baseline and the actual prompt embedding, accumulates gradients of the log-probability difference
with respect to the input embeddings and attributes the score to each token. The result is a heatmap
over tokens illustrating which words contributed most to the classification. The script includes
options to save intermediate heatmaps and supports CPU, CUDA and Apple MPS backends.

These metrics and interpretability tools enable researchers to quantify and explain how models
behave across demographic groups, complementing the controlled data generation pipeline.

7 Tests and documentation

Automated testing and documentation workflows are integrated to ensure code quality, consistency,
and maintainability across the project.

7.1 Testing

Unit tests are located in the tests/ directory and include basic checks to verify that the aixpert
package imports correctly and that the testing framework is properly configured. The test suite
uses pytest, and a dedicated pre-commit hook runs all non-integration tests automatically before

commits to catch issues early. Future contributors are encouraged to extend the test coverage to
individual modules and integration scenarios.
Code linting, formatting, and type checking are enforced through pre-commit hooks, including:

e ruff for linting and formatting Python and Jupyter files;

e mypy for static type checking (configured via pyproject.toml);

e typos for spell checking;

e nbQA for running ruff on Jupyter notebooks.

These checks are automatically run locally via pre-commit and in continuous integration through
pre-commit.ci), ensuring consistent style and correctness across contributions.

7.2 Documentation

Project documentation is built using MkDocs with the Material for MkDocs theme.

e The docs/ directory contains all documentation sources.

e The user_guide.md provides detailed instructions for running pipelines and configuring
providers.

e The api.md file contains the API reference, automatically generated using mkdocstrings with
the NumPy docstring style.

e Additional customization (e.g., themes, icons, and styles) is managed via mkdocs.yml and
custom CSS under docs/stylesheets/extra.css.

The documentation site includes integrated search, syntax highlighting, emoji, and dynamic
navigation features. The live documentation can be built locally using mkdocs serve.

8 Conclusion

This report has summarised a codebase for fairness-focused data generation. The project offers
building blocks for producing matched pairs of images using multiple providers, generating diverse
image prompts, synthesising textual scenes and MCQs, orchestrating prompt and metadata pipelines
via an agentic framework, and producing short videos. It leverages modern generative models:
OpenAl GPT-40, DALL-E 3, Gemini Imagen, Veo, xAl Grok-2 and Stable Diffusion XL Turbo,
while providing configuration-driven pipelines, retry logic and checkpointing to make experiments
reproducible. Beyond generation, the framework includes tools to calculate fairness metrics and
perform zero-shot classification with integrated gradients, giving researchers the means to audit
model behaviour across demographic groups and risk contexts, as per responsible Al principles [7].

https://pre-commit.ci

Acknowledgements

Resources used in preparing this research were provided, in part, by the Province of Ontario, the
Government of Canada through CIFAR, and companies sponsoring the Vector Institute.

Funding for the research was partly provided through Horizon Europe project AlXpert: An
agentic, multi-layer, GenAl-powered backbone to make an Al system explainable, accountable, and
transparent (ID: 101214389).

License

This work, including all source code and scripts accompanying this report, is licensed under the
MIT License [9].

References

[1] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,
Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.
Computer Science. hitps://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

[2] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[3] Google DeepMind. Google gemini imagen 4: Ai image generation. https://gemini.google/
overview/image-generation/, 2025. Accessed: 2025-08-25.

[4] Black Forest Labs. Flux. https://github.com/black-forest-1labs/flux, 2024.

[6] Zihao Lin, Samyadeep Basu, Mohammad Beigi, Varun Manjunatha, Ryan A. Rossi, Zichao Wang,
Yufan Zhou, Sriram Balasubramanian, Arman Zarei, Keivan Rezaei, Ying Shen, Barry Menglong
Yao, Zhiyang Xu, Qin Liu, Yuxiang Zhang, Yan Sun, Shilong Liu, Li Shen, Hongxuan Li, Soheil
Feizi, and Lifu Huang. A survey on mechanistic interpretability for multi-modal foundation
models, 2025.

[6] OpenAl. GPT-4o System Card, August 2024. White-paper style system card, version released
August 8, 2024. Accessed 2025-04-24.

[7] Shaina Raza, Oluwanifemi Bamgbose, Shardul Ghuge, Fatemeh Tavakol, Deepak John Reji,
and Syed Raza Bashir. Developing safe and responsible large language model: Can we
balance bias reduction and language understanding in large language models? arXiv preprint
arXiv:2404.01399, 2024.

[8] Shaina Raza, Arash Shaban-Nejad, Elham Dolatabadi, and Hiroshi Mamiya. Exploring bias
and prediction metrics to characterise the fairness of machine learning for equity-centered public
health decision-making: A narrative review. IEEE Access, 2024.

[9] Jerome H Saltzer. The origin of the “mit license”. IEEE Annals of the History of Computing,
42(4):94-98, 2020.

https://gemini.google/overview/image-generation/
https://gemini.google/overview/image-generation/
https://github.com/black-forest-labs/flux

[10] Hugging Face Team. Distilgpt2: A distilled version of gpt-2. https://dataloop.ai/library/
model/distilbert_distilgpt2/, 2024. Model hosted on Dataloop AI Platform, license

Apache-2.0.

[11] Mistral AT Team. Mistral 7b: A 7-billion-parameter language model. https://huggingface!
co/mistralai/Mistral-7B-v0.3 2023. Model hosted on Hugging Face, license Apache-2.0.

[12] xAL xal apl guide: Image generations. https://docs.x.ai/docs/guides/
image-generations, 2025. Accessed: 2025-08-25.

https://dataloop.ai/library/model/distilbert_distilgpt2/
https://dataloop.ai/library/model/distilbert_distilgpt2/
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://docs.x.ai/docs/guides/image-generations
https://docs.x.ai/docs/guides/image-generations

	Overview
	Repository structure
	Controlled image generation
	Synthetic data generation
	Image and VQA generation
	NLP synthetic scenes and MCQs
	Video generation

	Agentic Data Generation Framework
	Fairness metrics and zero‑shot explainability
	Tests and documentation
	Testing
	Documentation

	Conclusion
	Acknowledgements
	License

