Skip to content

Huggingface

HuggingFace PeftModel Generator

HFPeftModelGenerator

Bases: HuggingFaceGeneratorMixin, BaseGenerator

HFPeftModelGenerator Class.

NOTE: this class supports loading PeftModel's from HF Hub or from local. TODO: support loading custom models via a ~peft.Config and ~peft.get_peft_model

Source code in src/fed_rag/generators/huggingface/hf_peft_model.py
class HFPeftModelGenerator(HuggingFaceGeneratorMixin, BaseGenerator):
    """HFPeftModelGenerator Class.

    NOTE: this class supports loading PeftModel's from HF Hub or from local.
    TODO: support loading custom models via a `~peft.Config` and `~peft.get_peft_model`
    """

    model_config = ConfigDict(protected_namespaces=("pydantic_model_",))
    model_name: str = Field(
        description="Name of Peft model. Used for loading model from HF hub or local."
    )
    base_model_name: str = Field(
        description="Name of the frozen HuggingFace base model. Used for loading the model from HF hub or local."
    )
    generation_config: "GenerationConfig" = Field(
        description="The generation config used for generating with the PreTrainedModel."
    )
    load_model_kwargs: dict = Field(
        description="Optional kwargs dict for loading peft model from HF. Defaults to None.",
        default_factory=dict,
    )
    load_base_model_kwargs: dict = Field(
        description="Optional kwargs dict for loading base model from HF. Defaults to None.",
        default_factory=dict,
    )
    prompt_template: str = Field(description="Prompt template for RAG.")
    _model: Optional["PeftModel"] = PrivateAttr(default=None)
    _tokenizer: HFPretrainedTokenizer | None = PrivateAttr(default=None)

    def __init__(
        self,
        model_name: str,
        base_model_name: str,
        generation_config: Optional["GenerationConfig"] = None,
        prompt_template: str | None = None,
        load_model_kwargs: dict | None = None,
        load_base_model_kwargs: dict | None = None,
        load_model_at_init: bool = True,
    ):
        if not _has_huggingface:
            msg = (
                f"`{self.__class__.__name__}` requires `huggingface` extra to be installed. "
                "To fix please run `pip install fed-rag[huggingface]`."
            )
            raise MissingExtraError(msg)

        generation_config = (
            generation_config if generation_config else GenerationConfig()
        )
        prompt_template = (
            prompt_template if prompt_template else DEFAULT_PROMPT_TEMPLATE
        )
        super().__init__(
            model_name=model_name,
            base_model_name=base_model_name,
            generation_config=generation_config,
            prompt_template=prompt_template,
            load_model_kwargs=load_model_kwargs if load_model_kwargs else {},
            load_base_model_kwargs=(
                load_base_model_kwargs if load_base_model_kwargs else {}
            ),
        )
        self._tokenizer = HFPretrainedTokenizer(
            model_name=base_model_name, load_model_at_init=load_model_at_init
        )
        if load_model_at_init:
            self._model = self._load_model_from_hf()

    def _load_model_from_hf(self, **kwargs: Any) -> "PeftModel":
        load_base_kwargs = self.load_base_model_kwargs
        load_kwargs = self.load_model_kwargs
        load_kwargs.update(kwargs)
        self.load_model_kwargs = load_kwargs  # update load_model_kwargs
        base_model = AutoModelForCausalLM.from_pretrained(
            self.base_model_name, **load_base_kwargs
        )

        if "quantization_config" in load_base_kwargs:
            # preprocess model for kbit fine-tuning
            # https://huggingface.co/docs/peft/developer_guides/quantization
            base_model = prepare_model_for_kbit_training(base_model)

        return PeftModel.from_pretrained(
            base_model, self.model_name, **load_kwargs
        )

    @property
    def model(self) -> "PeftModel":
        if self._model is None:
            # load HF PeftModel
            self._model = self._load_model_from_hf()
        return self._model

    @model.setter
    def model(self, value: "PeftModel") -> None:
        self._model = value

    @property
    def tokenizer(self) -> HFPretrainedTokenizer:
        return self._tokenizer

    @tokenizer.setter
    def tokenizer(self, value: HFPretrainedTokenizer) -> None:
        self._tokenizer = value

HuggingFace PretrainedModel Generator

HFPretrainedModelGenerator

Bases: HuggingFaceGeneratorMixin, BaseGenerator

Source code in src/fed_rag/generators/huggingface/hf_pretrained_model.py
class HFPretrainedModelGenerator(HuggingFaceGeneratorMixin, BaseGenerator):
    model_config = ConfigDict(protected_namespaces=("pydantic_model_",))
    model_name: str = Field(
        description="Name of HuggingFace model. Used for loading the model from HF hub or local."
    )
    generation_config: "GenerationConfig" = Field(
        description="The generation config used for generating with the PreTrainedModel."
    )
    load_model_kwargs: dict = Field(
        description="Optional kwargs dict for loading models from HF. Defaults to None.",
        default_factory=dict,
    )
    prompt_template: str = Field(description="Prompt template for RAG.")
    _model: Optional["PreTrainedModel"] = PrivateAttr(default=None)
    _tokenizer: HFPretrainedTokenizer | None = PrivateAttr(default=None)

    def __init__(
        self,
        model_name: str,
        generation_config: Optional["GenerationConfig"] = None,
        prompt_template: str | None = None,
        load_model_kwargs: dict | None = None,
        load_model_at_init: bool = True,
    ):
        if not _has_huggingface:
            msg = (
                f"`{self.__class__.__name__}` requires `huggingface` extra to be installed. "
                "To fix please run `pip install fed-rag[huggingface]`."
            )
            raise MissingExtraError(msg)

        generation_config = (
            generation_config if generation_config else GenerationConfig()
        )
        prompt_template = (
            prompt_template if prompt_template else DEFAULT_PROMPT_TEMPLATE
        )
        super().__init__(
            model_name=model_name,
            generation_config=generation_config,
            prompt_template=prompt_template,
            load_model_kwargs=load_model_kwargs if load_model_kwargs else {},
        )
        self._tokenizer = HFPretrainedTokenizer(
            model_name=model_name, load_model_at_init=load_model_at_init
        )
        if load_model_at_init:
            self._model = self._load_model_from_hf()

    def _load_model_from_hf(self, **kwargs: Any) -> "PreTrainedModel":
        load_kwargs = self.load_model_kwargs
        load_kwargs.update(kwargs)
        self.load_model_kwargs = load_kwargs
        model = AutoModelForCausalLM.from_pretrained(
            self.model_name, **load_kwargs
        )
        return model

    @property
    def model(self) -> "PreTrainedModel":
        if self._model is None:
            # load HF Pretrained Model
            model = self._load_model_from_hf()
            self._model = model
        return self._model

    @model.setter
    def model(self, value: "PreTrainedModel") -> None:
        self._model = value

    @property
    def tokenizer(self) -> HFPretrainedTokenizer:
        return self._tokenizer

    @tokenizer.setter
    def tokenizer(self, value: HFPretrainedTokenizer) -> None:
        self._tokenizer = value