Benchmarker
Base Benchmark and Benchmarker
Benchmarker
¶
Bases: BaseModel
Benchmarker
Source code in src/fed_rag/evals/benchmarker.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
|
run
¶
run(
benchmark,
metric,
is_streaming=False,
agg="avg",
batch_size=1,
num_examples=None,
num_workers=1,
**kwargs
)
Execute the benchmark using the associated RAGSystem
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
agg
|
AggregationMode | str
|
the aggregation mode to apply to all example scores.
Modes include |
'avg'
|
benchmark
|
BaseBenchmark
|
the benchmark to run the |
required |
batch_size
|
int
|
number of examples to process in a single batch. |
1
|
metric
|
BaseEvaluationMetric
|
the metric to use for evaluation. |
required |
num_examples
|
int | None
|
Number of examples to use from the benchmark. If None, then the entire collection of examples of the benchmark are ran. Defaults to None. |
None
|
num_workers
|
int
|
concurrent execution via threads. |
1
|
Returns:
Name | Type | Description |
---|---|---|
BenchmarkResult |
BenchmarkResult
|
the benchmark result |
TODO: implement concurrent as well as batch execution. Need RAGSystem to be able to handle batches as well.