Breast Cancer Classification and Evaluation#
The Breast Cancer dataset is a well-suited example for demonstrating CyclOps features due to its two distinct classes (binary classification) and complete absence of missing values. This clean and organized structure makes it an ideal starting point for exploring CyclOps Evaluator.
[1]:
import numpy as np
import pandas as pd
from datasets.arrow_dataset import Dataset
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from cyclops.data.slicer import SliceSpec
from cyclops.evaluate import evaluator
from cyclops.evaluate.fairness import evaluate_fairness
from cyclops.evaluate.metrics import BinaryAccuracy, create_metric
from cyclops.evaluate.metrics.experimental import BinaryAUROC, BinaryAveragePrecision
from cyclops.evaluate.metrics.experimental.metric_dict import MetricDict
from cyclops.report.plot.classification import ClassificationPlotter
/mnt/data/actions_runners/cyclops-actions-runner-1/_work/cyclops/cyclops/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
[2]:
# Loading the data
breast_cancer_data = datasets.load_breast_cancer(as_frame=True)
X, y = breast_cancer_data.data, breast_cancer_data.target
Features#
Just taking a quick look at features and their statsβ¦
[3]:
df = breast_cancer_data.frame
df.describe().T
[3]:
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
mean radius | 569.0 | 14.127292 | 3.524049 | 6.981000 | 11.700000 | 13.370000 | 15.780000 | 28.11000 |
mean texture | 569.0 | 19.289649 | 4.301036 | 9.710000 | 16.170000 | 18.840000 | 21.800000 | 39.28000 |
mean perimeter | 569.0 | 91.969033 | 24.298981 | 43.790000 | 75.170000 | 86.240000 | 104.100000 | 188.50000 |
mean area | 569.0 | 654.889104 | 351.914129 | 143.500000 | 420.300000 | 551.100000 | 782.700000 | 2501.00000 |
mean smoothness | 569.0 | 0.096360 | 0.014064 | 0.052630 | 0.086370 | 0.095870 | 0.105300 | 0.16340 |
mean compactness | 569.0 | 0.104341 | 0.052813 | 0.019380 | 0.064920 | 0.092630 | 0.130400 | 0.34540 |
mean concavity | 569.0 | 0.088799 | 0.079720 | 0.000000 | 0.029560 | 0.061540 | 0.130700 | 0.42680 |
mean concave points | 569.0 | 0.048919 | 0.038803 | 0.000000 | 0.020310 | 0.033500 | 0.074000 | 0.20120 |
mean symmetry | 569.0 | 0.181162 | 0.027414 | 0.106000 | 0.161900 | 0.179200 | 0.195700 | 0.30400 |
mean fractal dimension | 569.0 | 0.062798 | 0.007060 | 0.049960 | 0.057700 | 0.061540 | 0.066120 | 0.09744 |
radius error | 569.0 | 0.405172 | 0.277313 | 0.111500 | 0.232400 | 0.324200 | 0.478900 | 2.87300 |
texture error | 569.0 | 1.216853 | 0.551648 | 0.360200 | 0.833900 | 1.108000 | 1.474000 | 4.88500 |
perimeter error | 569.0 | 2.866059 | 2.021855 | 0.757000 | 1.606000 | 2.287000 | 3.357000 | 21.98000 |
area error | 569.0 | 40.337079 | 45.491006 | 6.802000 | 17.850000 | 24.530000 | 45.190000 | 542.20000 |
smoothness error | 569.0 | 0.007041 | 0.003003 | 0.001713 | 0.005169 | 0.006380 | 0.008146 | 0.03113 |
compactness error | 569.0 | 0.025478 | 0.017908 | 0.002252 | 0.013080 | 0.020450 | 0.032450 | 0.13540 |
concavity error | 569.0 | 0.031894 | 0.030186 | 0.000000 | 0.015090 | 0.025890 | 0.042050 | 0.39600 |
concave points error | 569.0 | 0.011796 | 0.006170 | 0.000000 | 0.007638 | 0.010930 | 0.014710 | 0.05279 |
symmetry error | 569.0 | 0.020542 | 0.008266 | 0.007882 | 0.015160 | 0.018730 | 0.023480 | 0.07895 |
fractal dimension error | 569.0 | 0.003795 | 0.002646 | 0.000895 | 0.002248 | 0.003187 | 0.004558 | 0.02984 |
worst radius | 569.0 | 16.269190 | 4.833242 | 7.930000 | 13.010000 | 14.970000 | 18.790000 | 36.04000 |
worst texture | 569.0 | 25.677223 | 6.146258 | 12.020000 | 21.080000 | 25.410000 | 29.720000 | 49.54000 |
worst perimeter | 569.0 | 107.261213 | 33.602542 | 50.410000 | 84.110000 | 97.660000 | 125.400000 | 251.20000 |
worst area | 569.0 | 880.583128 | 569.356993 | 185.200000 | 515.300000 | 686.500000 | 1084.000000 | 4254.00000 |
worst smoothness | 569.0 | 0.132369 | 0.022832 | 0.071170 | 0.116600 | 0.131300 | 0.146000 | 0.22260 |
worst compactness | 569.0 | 0.254265 | 0.157336 | 0.027290 | 0.147200 | 0.211900 | 0.339100 | 1.05800 |
worst concavity | 569.0 | 0.272188 | 0.208624 | 0.000000 | 0.114500 | 0.226700 | 0.382900 | 1.25200 |
worst concave points | 569.0 | 0.114606 | 0.065732 | 0.000000 | 0.064930 | 0.099930 | 0.161400 | 0.29100 |
worst symmetry | 569.0 | 0.290076 | 0.061867 | 0.156500 | 0.250400 | 0.282200 | 0.317900 | 0.66380 |
worst fractal dimension | 569.0 | 0.083946 | 0.018061 | 0.055040 | 0.071460 | 0.080040 | 0.092080 | 0.20750 |
target | 569.0 | 0.627417 | 0.483918 | 0.000000 | 0.000000 | 1.000000 | 1.000000 | 1.00000 |
[4]:
# Splitting into train and test
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.1,
random_state=13,
)
# Use SVM classifier for binary classification
svc = SVC(C=10, gamma=0.01, probability=True)
svc.fit(X_train, y_train)
# model predictions
y_pred = svc.predict(X_test)
y_pred_prob = svc.predict_proba(X_test)
Now we can use CyclOps evaluation metrics to evaluate our modelβs performance. You can either use each metric individually by calling them, or define a MetricDict
object. Here, we show both methods.
Individual Metrics#
In case you need only a single metric, you can create an object of the desired metric and call it on your ground truth and predictions:
[5]:
bin_acc_metric = BinaryAccuracy()
bin_acc_metric(y_test.values, np.float64(y_pred))
[5]:
0.7192982456140351
Using MetricDict
#
You may define a collection of metrics in case you need more metrics. It also speeds up the metric calculation.
[6]:
metric_names = [
"binary_accuracy",
"binary_precision",
"binary_recall",
"binary_f1_score",
"binary_roc_curve",
]
metrics = [
create_metric(metric_name, experimental=True) for metric_name in metric_names
]
metric_collection = MetricDict(metrics)
metric_collection(y_test.values, np.float64(y_pred))
[6]:
{'BinaryAccuracy': array(0.71929824, dtype=float32),
'BinaryPrecision': array(0.7090909, dtype=float32),
'BinaryRecall': array(1., dtype=float32),
'BinaryF1Score': array(0.82978725, dtype=float32),
'BinaryROC': ROCCurve(fpr=array([0. , 0.8888889, 1. ], dtype=float32), tpr=array([0., 1., 1.], dtype=float32), thresholds=array([1., 1., 0.]))}
You may reset the metrics collection and add other metrics:
[7]:
metric_collection.reset()
metric_collection.add_metrics(BinaryAveragePrecision(), BinaryAUROC())
metric_collection(y_test.values, np.float64(y_pred))
[7]:
{'BinaryAccuracy': array(0.71929824, dtype=float32),
'BinaryPrecision': array(0.7090909, dtype=float32),
'BinaryRecall': array(1., dtype=float32),
'BinaryF1Score': array(0.82978725, dtype=float32),
'BinaryROC': ROCCurve(fpr=array([0. , 0.8888889, 1. ], dtype=float32), tpr=array([0., 1., 1.], dtype=float32), thresholds=array([1., 1., 0.])),
'BinaryAveragePrecision': 0.7090909,
'BinaryAUROC': 0.5555556}
Data Slicing#
In addition to overall metrics, it might be interesting to see how the model performs on certain subpopulation or subsets. We can define these subsets using SliceSpec
objects.
[8]:
spec_list = [
{
"worst radius": {
"min_value": 14.0,
"max_value": 15.0,
"min_inclusive": True,
"max_inclusive": False,
},
},
{
"worst radius": {
"min_value": 15.0,
"max_value": 17.0,
"min_inclusive": True,
"max_inclusive": False,
},
},
{
"worst texture": {
"min_value": 23.1,
"max_value": 28.7,
"min_inclusive": True,
"max_inclusive": False,
},
},
]
slice_spec = SliceSpec(spec_list)
Intersectional slicing#
When subpopulation slices are specified using the SliceSpec
, sometimes we wish create combinations of intersectional slices. We can use the intersections
argument to specify this.
[9]:
slice_spec = SliceSpec(spec_list, intersections=2)
slice_spec
[9]:
SliceSpec(spec_list=[{'worst radius': {'min_value': 14.0, 'max_value': 15.0, 'min_inclusive': True, 'max_inclusive': False}}, {'worst radius': {'min_value': 15.0, 'max_value': 17.0, 'min_inclusive': True, 'max_inclusive': False}}, {'worst texture': {'min_value': 23.1, 'max_value': 28.7, 'min_inclusive': True, 'max_inclusive': False}}, {'worst radius': {'min_value': 14.0, 'max_value': 15.0, 'min_inclusive': True, 'max_inclusive': False}, 'worst texture': {'min_value': 23.1, 'max_value': 28.7, 'min_inclusive': True, 'max_inclusive': False}}, {'worst radius': {'min_value': 15.0, 'max_value': 17.0, 'min_inclusive': True, 'max_inclusive': False}, 'worst texture': {'min_value': 23.1, 'max_value': 28.7, 'min_inclusive': True, 'max_inclusive': False}}], intersections=2, validate=True, include_overall=True, column_names=None)
Preparing Result#
CyclOps Evaluator takes data as a HuggingFace Dataset object, so we combine predictions and features in a dataframe, and create a Dataset
object:
[10]:
# Combine result and features for test data
df = pd.concat([X_test, pd.DataFrame(y_test, columns=["target"])], axis=1)
df["preds"] = y_pred
df["preds_prob"] = y_pred_prob[:, 1]
[11]:
# Create Dataset object
breast_cancer_data = Dataset.from_pandas(df)
breast_cancer_sliced_result = evaluator.evaluate(
dataset=breast_cancer_data,
metrics=metric_collection, # type: ignore[list-item]
target_columns="target",
prediction_columns="preds_prob",
slice_spec=slice_spec,
)
- Filter -> worst radius:[14.0 - 15.0): 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> worst radius:[14.0 - 15.0): 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[14.0 - 15.0): 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> worst radius:[14.0 - 15.0): 100%|ββββββββββ| 57/57 [00:00<00:00, 3770.84 examples/s]
</pre>
- Filter -> worst radius:[14.0 - 15.0): 100%|ββββββββββ| 57/57 [00:00<00:00, 3770.84 examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[14.0 - 15.0): 100%|ββββββββββ| 57/57 [00:00<00:00, 3770.84 examples/s]
- Filter -> worst radius:[15.0 - 17.0): 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> worst radius:[15.0 - 17.0): 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[15.0 - 17.0): 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> worst radius:[15.0 - 17.0): 100%|ββββββββββ| 57/57 [00:00<00:00, 4768.16 examples/s]
</pre>
- Filter -> worst radius:[15.0 - 17.0): 100%|ββββββββββ| 57/57 [00:00<00:00, 4768.16 examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[15.0 - 17.0): 100%|ββββββββββ| 57/57 [00:00<00:00, 4768.16 examples/s]
- Filter -> worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4506.09 examples/s]
</pre>
- Filter -> worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4506.09 examples/s]
end{sphinxVerbatim}
Filter -> worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4506.09 examples/s]
- Filter -> worst radius:[14.0 - 15.0)&worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> worst radius:[14.0 - 15.0)&worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[14.0 - 15.0)&worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> worst radius:[14.0 - 15.0)&worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4320.35 examples/s]
</pre>
- Filter -> worst radius:[14.0 - 15.0)&worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4320.35 examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[14.0 - 15.0)&worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4320.35 examples/s]
/mnt/data/actions_runners/cyclops-actions-runner-1/_work/cyclops/cyclops/cyclops/evaluate/metrics/experimental/functional/roc.py:74: UserWarning:
No negative samples in targets false positive value should be meaningless. Returning an array of 0s instead.
- Filter -> worst radius:[15.0 - 17.0)&worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> worst radius:[15.0 - 17.0)&worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[15.0 - 17.0)&worst texture:[23.1 - 28.7): 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> worst radius:[15.0 - 17.0)&worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4171.25 examples/s]
</pre>
- Filter -> worst radius:[15.0 - 17.0)&worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4171.25 examples/s]
end{sphinxVerbatim}
Filter -> worst radius:[15.0 - 17.0)&worst texture:[23.1 - 28.7): 100%|ββββββββββ| 57/57 [00:00<00:00, 4171.25 examples/s]
- Filter -> overall: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> overall: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> overall: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> overall: 100%|ββββββββββ| 57/57 [00:00<00:00, 5114.90 examples/s]
</pre>
- Filter -> overall: 100%|ββββββββββ| 57/57 [00:00<00:00, 5114.90 examples/s]
end{sphinxVerbatim}
Filter -> overall: 100%|ββββββββββ| 57/57 [00:00<00:00, 5114.90 examples/s]
We can visualize the BinaryF1Score
and BinaryPrecision
for the different slices
[12]:
# Extracting the metric values for all the slices.
slice_metrics = {
slice_name: {
metric_name: metric_value
for metric_name, metric_value in slice_results.items()
if metric_name in ["BinaryF1Score", "BinaryPrecision"]
}
for slice_name, slice_results in breast_cancer_sliced_result[
"model_for_preds_prob"
].items()
}
# Plotting the metric values for all the slices.
plotter = ClassificationPlotter(task_type="binary", class_names=["0", "1"])
plotter.set_template("plotly_white")
slice_metrics_plot = plotter.metrics_comparison_bar(slice_metrics)
slice_metrics_plot.show()
Fairness Evaluator#
The Breast Cancer dataset may not be a very good example to apply fairness, but to demonstrate how you can use our fairness evaluator, we apply it to mean texture
feature. Itβs recommended to use it on features with discrete values. For optimal results, the feature should have less than 50 unique categories.
[13]:
fairness_result = evaluate_fairness(
dataset=breast_cancer_data,
metrics="binary_precision", # type: ignore[list-item]
groups="mean texture",
target_columns="target",
prediction_columns="preds_prob",
)
fairness_result
2024-07-16 16:53:07,812 WARNING cyclops.evaluate.fairness.evaluator - The number of unique values for the group is greater than 50. This may take a long time to compute. Consider binning the values into fewer groups.
- Filter -> mean texture:16.93: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:16.93: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.93: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:16.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 4900.59 examples/s]
</pre>
- Filter -> mean texture:16.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 4900.59 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 4900.59 examples/s]
- Filter -> mean texture:13.32: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:13.32: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:13.32: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:13.32: 100%|ββββββββββ| 57/57 [00:00<00:00, 4870.64 examples/s]
</pre>
- Filter -> mean texture:13.32: 100%|ββββββββββ| 57/57 [00:00<00:00, 4870.64 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:13.32: 100%|ββββββββββ| 57/57 [00:00<00:00, 4870.64 examples/s]
- Filter -> mean texture:21.41: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:21.41: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:21.41: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:21.41: 100%|ββββββββββ| 57/57 [00:00<00:00, 5148.82 examples/s]
</pre>
- Filter -> mean texture:21.41: 100%|ββββββββββ| 57/57 [00:00<00:00, 5148.82 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:21.41: 100%|ββββββββββ| 57/57 [00:00<00:00, 5148.82 examples/s]
- Filter -> mean texture:21.81: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:21.81: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:21.81: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:21.81: 100%|ββββββββββ| 57/57 [00:00<00:00, 5073.65 examples/s]
</pre>
- Filter -> mean texture:21.81: 100%|ββββββββββ| 57/57 [00:00<00:00, 5073.65 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:21.81: 100%|ββββββββββ| 57/57 [00:00<00:00, 5073.65 examples/s]
/mnt/data/actions_runners/cyclops-actions-runner-1/_work/cyclops/cyclops/cyclops/evaluate/metrics/experimental/utils/ops.py:530: RuntimeWarning:
invalid value encountered in divide
- Filter -> mean texture:18.89: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.89: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.89: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.89: 100%|ββββββββββ| 57/57 [00:00<00:00, 4913.99 examples/s]
</pre>
- Filter -> mean texture:18.89: 100%|ββββββββββ| 57/57 [00:00<00:00, 4913.99 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.89: 100%|ββββββββββ| 57/57 [00:00<00:00, 4913.99 examples/s]
- Filter -> mean texture:18.83: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.83: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.83: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.83: 100%|ββββββββββ| 57/57 [00:00<00:00, 5072.57 examples/s]
</pre>
- Filter -> mean texture:18.83: 100%|ββββββββββ| 57/57 [00:00<00:00, 5072.57 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.83: 100%|ββββββββββ| 57/57 [00:00<00:00, 5072.57 examples/s]
- Filter -> mean texture:15.98: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:15.98: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.98: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:15.98: 100%|ββββββββββ| 57/57 [00:00<00:00, 5123.56 examples/s]
</pre>
- Filter -> mean texture:15.98: 100%|ββββββββββ| 57/57 [00:00<00:00, 5123.56 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.98: 100%|ββββββββββ| 57/57 [00:00<00:00, 5123.56 examples/s]
- Filter -> mean texture:12.84: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:12.84: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:12.84: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:12.84: 100%|ββββββββββ| 57/57 [00:00<00:00, 5034.44 examples/s]
</pre>
- Filter -> mean texture:12.84: 100%|ββββββββββ| 57/57 [00:00<00:00, 5034.44 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:12.84: 100%|ββββββββββ| 57/57 [00:00<00:00, 5034.44 examples/s]
- Filter -> mean texture:18.54: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.54: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.54: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.54: 100%|ββββββββββ| 57/57 [00:00<00:00, 4930.91 examples/s]
</pre>
- Filter -> mean texture:18.54: 100%|ββββββββββ| 57/57 [00:00<00:00, 4930.91 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.54: 100%|ββββββββββ| 57/57 [00:00<00:00, 4930.91 examples/s]
- Filter -> mean texture:14.74: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:14.74: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.74: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:14.74: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.24 examples/s]
</pre>
- Filter -> mean texture:14.74: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.24 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.74: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.24 examples/s]
- Filter -> mean texture:20.7: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:20.7: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.7: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:20.7: 100%|ββββββββββ| 57/57 [00:00<00:00, 4717.72 examples/s]
</pre>
- Filter -> mean texture:20.7: 100%|ββββββββββ| 57/57 [00:00<00:00, 4717.72 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.7: 100%|ββββββββββ| 57/57 [00:00<00:00, 4717.72 examples/s]
- Filter -> mean texture:23.93: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:23.93: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:23.93: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:23.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 4983.54 examples/s]
</pre>
- Filter -> mean texture:23.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 4983.54 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:23.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 4983.54 examples/s]
- Filter -> mean texture:14.08: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:14.08: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.08: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:14.08: 100%|ββββββββββ| 57/57 [00:00<00:00, 5029.99 examples/s]
</pre>
- Filter -> mean texture:14.08: 100%|ββββββββββ| 57/57 [00:00<00:00, 5029.99 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.08: 100%|ββββββββββ| 57/57 [00:00<00:00, 5029.99 examples/s]
- Filter -> mean texture:26.47: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:26.47: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:26.47: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:26.47: 100%|ββββββββββ| 57/57 [00:00<00:00, 4997.71 examples/s]
</pre>
- Filter -> mean texture:26.47: 100%|ββββββββββ| 57/57 [00:00<00:00, 4997.71 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:26.47: 100%|ββββββββββ| 57/57 [00:00<00:00, 4997.71 examples/s]
- Filter -> mean texture:23.81: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:23.81: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:23.81: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:23.81: 100%|ββββββββββ| 57/57 [00:00<00:00, 4909.75 examples/s]
</pre>
- Filter -> mean texture:23.81: 100%|ββββββββββ| 57/57 [00:00<00:00, 4909.75 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:23.81: 100%|ββββββββββ| 57/57 [00:00<00:00, 4909.75 examples/s]
- Filter -> mean texture:10.94: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:10.94: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:10.94: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:10.94: 100%|ββββββββββ| 57/57 [00:00<00:00, 5072.68 examples/s]
</pre>
- Filter -> mean texture:10.94: 100%|ββββββββββ| 57/57 [00:00<00:00, 5072.68 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:10.94: 100%|ββββββββββ| 57/57 [00:00<00:00, 5072.68 examples/s]
- Filter -> mean texture:16.67: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:16.67: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.67: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:16.67: 100%|ββββββββββ| 57/57 [00:00<00:00, 5009.96 examples/s]
</pre>
- Filter -> mean texture:16.67: 100%|ββββββββββ| 57/57 [00:00<00:00, 5009.96 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.67: 100%|ββββββββββ| 57/57 [00:00<00:00, 5009.96 examples/s]
- Filter -> mean texture:17.43: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:17.43: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.43: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:17.43: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.03 examples/s]
</pre>
- Filter -> mean texture:17.43: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.03 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.43: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.03 examples/s]
- Filter -> mean texture:15.04: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:15.04: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.04: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:15.04: 100%|ββββββββββ| 57/57 [00:00<00:00, 5096.69 examples/s]
</pre>
- Filter -> mean texture:15.04: 100%|ββββββββββ| 57/57 [00:00<00:00, 5096.69 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.04: 100%|ββββββββββ| 57/57 [00:00<00:00, 5096.69 examples/s]
- Filter -> mean texture:10.38: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:10.38: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:10.38: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:10.38: 100%|ββββββββββ| 57/57 [00:00<00:00, 5190.29 examples/s]
</pre>
- Filter -> mean texture:10.38: 100%|ββββββββββ| 57/57 [00:00<00:00, 5190.29 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:10.38: 100%|ββββββββββ| 57/57 [00:00<00:00, 5190.29 examples/s]
- Filter -> mean texture:20.78: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:20.78: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.78: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:20.78: 100%|ββββββββββ| 57/57 [00:00<00:00, 4726.58 examples/s]
</pre>
- Filter -> mean texture:20.78: 100%|ββββββββββ| 57/57 [00:00<00:00, 4726.58 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.78: 100%|ββββββββββ| 57/57 [00:00<00:00, 4726.58 examples/s]
- Filter -> mean texture:20.13: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:20.13: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.13: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:20.13: 100%|ββββββββββ| 57/57 [00:00<00:00, 5132.02 examples/s]
</pre>
- Filter -> mean texture:20.13: 100%|ββββββββββ| 57/57 [00:00<00:00, 5132.02 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.13: 100%|ββββββββββ| 57/57 [00:00<00:00, 5132.02 examples/s]
- Filter -> mean texture:19.51: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:19.51: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.51: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:19.51: 100%|ββββββββββ| 57/57 [00:00<00:00, 5075.05 examples/s]
</pre>
- Filter -> mean texture:19.51: 100%|ββββββββββ| 57/57 [00:00<00:00, 5075.05 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.51: 100%|ββββββββββ| 57/57 [00:00<00:00, 5075.05 examples/s]
- Filter -> mean texture:12.17: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:12.17: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:12.17: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:12.17: 100%|ββββββββββ| 57/57 [00:00<00:00, 5106.59 examples/s]
</pre>
- Filter -> mean texture:12.17: 100%|ββββββββββ| 57/57 [00:00<00:00, 5106.59 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:12.17: 100%|ββββββββββ| 57/57 [00:00<00:00, 5106.59 examples/s]
- Filter -> mean texture:16.49: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:16.49: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.49: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:16.49: 100%|ββββββββββ| 57/57 [00:00<00:00, 4948.06 examples/s]
</pre>
- Filter -> mean texture:16.49: 100%|ββββββββββ| 57/57 [00:00<00:00, 4948.06 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.49: 100%|ββββββββββ| 57/57 [00:00<00:00, 4948.06 examples/s]
- Filter -> mean texture:20.82: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:20.82: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.82: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:20.82: 100%|ββββββββββ| 57/57 [00:00<00:00, 5135.22 examples/s]
</pre>
- Filter -> mean texture:20.82: 100%|ββββββββββ| 57/57 [00:00<00:00, 5135.22 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.82: 100%|ββββββββββ| 57/57 [00:00<00:00, 5135.22 examples/s]
- Filter -> mean texture:22.47: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:22.47: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:22.47: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:22.47: 100%|ββββββββββ| 57/57 [00:00<00:00, 5217.93 examples/s]
</pre>
- Filter -> mean texture:22.47: 100%|ββββββββββ| 57/57 [00:00<00:00, 5217.93 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:22.47: 100%|ββββββββββ| 57/57 [00:00<00:00, 5217.93 examples/s]
- Filter -> mean texture:20.25: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:20.25: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.25: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:20.25: 100%|ββββββββββ| 57/57 [00:00<00:00, 5150.04 examples/s]
</pre>
- Filter -> mean texture:20.25: 100%|ββββββββββ| 57/57 [00:00<00:00, 5150.04 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.25: 100%|ββββββββββ| 57/57 [00:00<00:00, 5150.04 examples/s]
- Filter -> mean texture:18.03: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.03: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.03: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.03: 100%|ββββββββββ| 57/57 [00:00<00:00, 5079.36 examples/s]
</pre>
- Filter -> mean texture:18.03: 100%|ββββββββββ| 57/57 [00:00<00:00, 5079.36 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.03: 100%|ββββββββββ| 57/57 [00:00<00:00, 5079.36 examples/s]
- Filter -> mean texture:22.07: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:22.07: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:22.07: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:22.07: 100%|ββββββββββ| 57/57 [00:00<00:00, 5166.07 examples/s]
</pre>
- Filter -> mean texture:22.07: 100%|ββββββββββ| 57/57 [00:00<00:00, 5166.07 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:22.07: 100%|ββββββββββ| 57/57 [00:00<00:00, 5166.07 examples/s]
- Filter -> mean texture:14.86: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:14.86: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.86: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:14.86: 100%|ββββββββββ| 57/57 [00:00<00:00, 5309.48 examples/s]
</pre>
- Filter -> mean texture:14.86: 100%|ββββββββββ| 57/57 [00:00<00:00, 5309.48 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.86: 100%|ββββββββββ| 57/57 [00:00<00:00, 5309.48 examples/s]
- Filter -> mean texture:22.91: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:22.91: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:22.91: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:22.91: 100%|ββββββββββ| 57/57 [00:00<00:00, 4859.45 examples/s]
</pre>
- Filter -> mean texture:22.91: 100%|ββββββββββ| 57/57 [00:00<00:00, 4859.45 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:22.91: 100%|ββββββββββ| 57/57 [00:00<00:00, 4859.45 examples/s]
- Filter -> mean texture:19.31: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:19.31: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.31: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:19.31: 100%|ββββββββββ| 57/57 [00:00<00:00, 5054.66 examples/s]
</pre>
- Filter -> mean texture:19.31: 100%|ββββββββββ| 57/57 [00:00<00:00, 5054.66 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.31: 100%|ββββββββββ| 57/57 [00:00<00:00, 5054.66 examples/s]
- Filter -> mean texture:16.21: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:16.21: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.21: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:16.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5234.96 examples/s]
</pre>
- Filter -> mean texture:16.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5234.96 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5234.96 examples/s]
- Filter -> mean texture:24.68: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:24.68: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:24.68: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:24.68: 100%|ββββββββββ| 57/57 [00:00<00:00, 5267.25 examples/s]
</pre>
- Filter -> mean texture:24.68: 100%|ββββββββββ| 57/57 [00:00<00:00, 5267.25 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:24.68: 100%|ββββββββββ| 57/57 [00:00<00:00, 5267.25 examples/s]
- Filter -> mean texture:11.28: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:11.28: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:11.28: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:11.28: 100%|ββββββββββ| 57/57 [00:00<00:00, 4937.02 examples/s]
</pre>
- Filter -> mean texture:11.28: 100%|ββββββββββ| 57/57 [00:00<00:00, 4937.02 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:11.28: 100%|ββββββββββ| 57/57 [00:00<00:00, 4937.02 examples/s]
- Filter -> mean texture:14.06: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:14.06: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.06: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:14.06: 100%|ββββββββββ| 57/57 [00:00<00:00, 4986.35 examples/s]
</pre>
- Filter -> mean texture:14.06: 100%|ββββββββββ| 57/57 [00:00<00:00, 4986.35 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:14.06: 100%|ββββββββββ| 57/57 [00:00<00:00, 4986.35 examples/s]
- Filter -> mean texture:16.62: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:16.62: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.62: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:16.62: 100%|ββββββββββ| 57/57 [00:00<00:00, 5197.40 examples/s]
</pre>
- Filter -> mean texture:16.62: 100%|ββββββββββ| 57/57 [00:00<00:00, 5197.40 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.62: 100%|ββββββββββ| 57/57 [00:00<00:00, 5197.40 examples/s]
- Filter -> mean texture:13.93: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:13.93: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:13.93: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:13.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 5277.83 examples/s]
</pre>
- Filter -> mean texture:13.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 5277.83 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:13.93: 100%|ββββββββββ| 57/57 [00:00<00:00, 5277.83 examples/s]
- Filter -> mean texture:19.46: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:19.46: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.46: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:19.46: 100%|ββββββββββ| 57/57 [00:00<00:00, 5279.00 examples/s]
</pre>
- Filter -> mean texture:19.46: 100%|ββββββββββ| 57/57 [00:00<00:00, 5279.00 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.46: 100%|ββββββββββ| 57/57 [00:00<00:00, 5279.00 examples/s]
- Filter -> mean texture:17.21: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:17.21: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.21: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:17.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5184.55 examples/s]
</pre>
- Filter -> mean texture:17.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5184.55 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5184.55 examples/s]
- Filter -> mean texture:18.87: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.87: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.87: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.87: 100%|ββββββββββ| 57/57 [00:00<00:00, 5247.02 examples/s]
</pre>
- Filter -> mean texture:18.87: 100%|ββββββββββ| 57/57 [00:00<00:00, 5247.02 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.87: 100%|ββββββββββ| 57/57 [00:00<00:00, 5247.02 examples/s]
- Filter -> mean texture:19.07: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:19.07: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.07: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:19.07: 100%|ββββββββββ| 57/57 [00:00<00:00, 5210.20 examples/s]
</pre>
- Filter -> mean texture:19.07: 100%|ββββββββββ| 57/57 [00:00<00:00, 5210.20 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.07: 100%|ββββββββββ| 57/57 [00:00<00:00, 5210.20 examples/s]
- Filter -> mean texture:16.41: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:16.41: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.41: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:16.41: 100%|ββββββββββ| 57/57 [00:00<00:00, 5055.73 examples/s]
</pre>
- Filter -> mean texture:16.41: 100%|ββββββββββ| 57/57 [00:00<00:00, 5055.73 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:16.41: 100%|ββββββββββ| 57/57 [00:00<00:00, 5055.73 examples/s]
- Filter -> mean texture:18.02: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.02: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.02: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.02: 100%|ββββββββββ| 57/57 [00:00<00:00, 5139.64 examples/s]
</pre>
- Filter -> mean texture:18.02: 100%|ββββββββββ| 57/57 [00:00<00:00, 5139.64 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.02: 100%|ββββββββββ| 57/57 [00:00<00:00, 5139.64 examples/s]
- Filter -> mean texture:18.33: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:18.33: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.33: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:18.33: 100%|ββββββββββ| 57/57 [00:00<00:00, 5094.08 examples/s]
</pre>
- Filter -> mean texture:18.33: 100%|ββββββββββ| 57/57 [00:00<00:00, 5094.08 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:18.33: 100%|ββββββββββ| 57/57 [00:00<00:00, 5094.08 examples/s]
- Filter -> mean texture:21.28: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:21.28: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:21.28: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:21.28: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.76 examples/s]
</pre>
- Filter -> mean texture:21.28: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.76 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:21.28: 100%|ββββββββββ| 57/57 [00:00<00:00, 4972.76 examples/s]
- Filter -> mean texture:24.21: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:24.21: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:24.21: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:24.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5064.40 examples/s]
</pre>
- Filter -> mean texture:24.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5064.40 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:24.21: 100%|ββββββββββ| 57/57 [00:00<00:00, 5064.40 examples/s]
- Filter -> mean texture:15.7: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:15.7: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.7: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:15.7: 100%|ββββββββββ| 57/57 [00:00<00:00, 5004.09 examples/s]
</pre>
- Filter -> mean texture:15.7: 100%|ββββββββββ| 57/57 [00:00<00:00, 5004.09 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.7: 100%|ββββββββββ| 57/57 [00:00<00:00, 5004.09 examples/s]
- Filter -> mean texture:13.9: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:13.9: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:13.9: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:13.9: 100%|ββββββββββ| 57/57 [00:00<00:00, 5281.22 examples/s]
</pre>
- Filter -> mean texture:13.9: 100%|ββββββββββ| 57/57 [00:00<00:00, 5281.22 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:13.9: 100%|ββββββββββ| 57/57 [00:00<00:00, 5281.22 examples/s]
- Filter -> mean texture:15.05: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:15.05: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.05: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:15.05: 100%|ββββββββββ| 57/57 [00:00<00:00, 5301.24 examples/s]
</pre>
- Filter -> mean texture:15.05: 100%|ββββββββββ| 57/57 [00:00<00:00, 5301.24 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:15.05: 100%|ββββββββββ| 57/57 [00:00<00:00, 5301.24 examples/s]
- Filter -> mean texture:19.66: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:19.66: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.66: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:19.66: 100%|ββββββββββ| 57/57 [00:00<00:00, 5328.06 examples/s]
</pre>
- Filter -> mean texture:19.66: 100%|ββββββββββ| 57/57 [00:00<00:00, 5328.06 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:19.66: 100%|ββββββββββ| 57/57 [00:00<00:00, 5328.06 examples/s]
- Filter -> mean texture:25.11: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:25.11: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:25.11: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:25.11: 100%|ββββββββββ| 57/57 [00:00<00:00, 5279.93 examples/s]
</pre>
- Filter -> mean texture:25.11: 100%|ββββββββββ| 57/57 [00:00<00:00, 5279.93 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:25.11: 100%|ββββββββββ| 57/57 [00:00<00:00, 5279.93 examples/s]
- Filter -> mean texture:20.22: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:20.22: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.22: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:20.22: 100%|ββββββββββ| 57/57 [00:00<00:00, 5131.47 examples/s]
</pre>
- Filter -> mean texture:20.22: 100%|ββββββββββ| 57/57 [00:00<00:00, 5131.47 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:20.22: 100%|ββββββββββ| 57/57 [00:00<00:00, 5131.47 examples/s]
- Filter -> mean texture:17.31: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:17.31: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.31: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:17.31: 100%|ββββββββββ| 57/57 [00:00<00:00, 5133.79 examples/s]
</pre>
- Filter -> mean texture:17.31: 100%|ββββββββββ| 57/57 [00:00<00:00, 5133.79 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.31: 100%|ββββββββββ| 57/57 [00:00<00:00, 5133.79 examples/s]
- Filter -> mean texture:28.03: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:28.03: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:28.03: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:28.03: 100%|ββββββββββ| 57/57 [00:00<00:00, 5071.71 examples/s]
</pre>
- Filter -> mean texture:28.03: 100%|ββββββββββ| 57/57 [00:00<00:00, 5071.71 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:28.03: 100%|ββββββββββ| 57/57 [00:00<00:00, 5071.71 examples/s]
- Filter -> mean texture:17.94: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> mean texture:17.94: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.94: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> mean texture:17.94: 100%|ββββββββββ| 57/57 [00:00<00:00, 5424.53 examples/s]
</pre>
- Filter -> mean texture:17.94: 100%|ββββββββββ| 57/57 [00:00<00:00, 5424.53 examples/s]
end{sphinxVerbatim}
Filter -> mean texture:17.94: 100%|ββββββββββ| 57/57 [00:00<00:00, 5424.53 examples/s]
- Filter -> overall: 0%| | 0/57 [00:00<?, ? examples/s]
</pre>
- Filter -> overall: 0%| | 0/57 [00:00<?, ? examples/s]
end{sphinxVerbatim}
Filter -> overall: 0%| | 0/57 [00:00<?, ? examples/s]
- Filter -> overall: 100%|ββββββββββ| 57/57 [00:00<00:00, 5452.61 examples/s]
</pre>
- Filter -> overall: 100%|ββββββββββ| 57/57 [00:00<00:00, 5452.61 examples/s]
end{sphinxVerbatim}
Filter -> overall: 100%|ββββββββββ| 57/57 [00:00<00:00, 5452.61 examples/s]
[13]:
{'mean texture:16.93': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:13.32': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:21.41': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:21.81': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:18.89': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:18.83': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:15.98': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:12.84': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:18.54': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:14.74': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:20.7': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:23.93': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:14.08': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:26.47': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:23.81': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:10.94': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:16.67': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:17.43': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:15.04': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:10.38': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:20.78': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:20.13': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:19.51': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:12.17': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:16.49': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:20.82': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:22.47': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:20.25': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:18.03': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:22.07': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:14.86': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:22.91': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:19.31': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:16.21': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:24.68': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:11.28': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:14.06': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:16.62': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:13.93': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:19.46': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:17.21': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:18.87': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:19.07': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:16.41': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:18.02': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:18.33': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:21.28': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:24.21': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:15.7': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:13.9': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:15.05': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:19.66': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:25.11': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:20.22': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:17.31': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'mean texture:28.03': {'Group Size': 1,
'BinaryPrecision': array(0., dtype=float32),
'BinaryPrecision Parity': 0.0},
'mean texture:17.94': {'Group Size': 1,
'BinaryPrecision': array(1., dtype=float32),
'BinaryPrecision Parity': 1.037037},
'overall': {'Group Size': 57,
'BinaryPrecision': array(0.96428573, dtype=float32),
'BinaryPrecision Parity': 1.0}}
[ ]: