
‭Developer's Guide: Setting up & Running Fairsense AI on Local‬
‭Fairsense AI is built keeping in mind the sustainability practices for efficient LLM inference‬
‭locally with the support for both CPU & GPU based systems.‬

‭Use of Local LLMs‬
‭Running large language models (LLMs) locally provides significant advantages, whether for‬
‭research, experimentation, or building advanced applications. However, the process of‬
‭configuring the necessary environment and setting up LLMs on local systems is often‬
‭complex and resource intensive.‬

‭Why Use Local LLMs?‬
‭●‬ ‭Privacy: Keep your data secure by running models locally.‬
‭●‬ ‭Speed: No cloud dependencies mean faster responses.‬
‭●‬ ‭Customization: Fine-tune models for your specific needs.‬
‭●‬ ‭Cost Efficiency: Save on cloud service fees.‬
‭●‬ ‭Offline Access: Use models without an internet connection.‬
‭●‬ ‭Hardware Optimization: Efficiently use your local system resources.‬

‭Steps to Set up Development Environment‬

‭1. Prerequisites‬

‭Before starting, ensure you have the following:‬
‭- A computer with disk space and RAM for model files.‬
‭- Python 3.9 or later installed.‬

‭2. Setting of Inference For CPU‬

‭For CPU systems, we make use of‬‭Ollama‬‭, a tool wrapped‬‭around‬‭llama.cpp‬‭, which simplifies‬
‭using LLMs locally with an easy-to-use interface.‬

‭A. Download Ollama‬

‭Ollama works on macOS, Windows, and Linux. Choose one of these options to‬
‭download it:‬
‭- Visit the Ollama GitHub page for installation instructions:‬
‭https://github.com/ollama‬
‭- Go to Ollama’s official website and download the installer for macOS or Windows:‬
‭https://ollama.com‬

‭B. Install Ollama‬

‭Use Python's package manager, pip, to install Ollama. Open a terminal (or command‬
‭prompt) and run:‬

‭pip install ollama‬

https://ollama.com/
https://github.com/ggerganov/llama.cpp
https://ollama.com/

‭💡 Tip: Use a virtual environment like Miniconda for better package management.‬

‭C. Downloading Pre-Trained Models‬

‭Ollama gives you access to various pre-trained LLMs. To download a model, run:‬

‭ollama pull <model-name>‬

‭Example: The current version (v0.8.2) of FairSense AI makes use of Llama 3.2 model‬
‭with 3B parameters‬

‭ollama pull llama3.2‬

‭D. Optional: Start the Ollama Server‬

‭To enable local interaction with the model, start the Ollama server:‬

‭ollama serve‬

‭E. Query the Model‬

‭Ask the model questions using the ollama query command. For example:‬

‭ollama query llama3.2 "What are the benefits of using local LLMs?"‬

‭Skip Step D and E , if you only want to download and use models in FairSense AI‬
‭Tool.‬

‭3. Setting of Inference For GPU‬

‭Torch is integral for leveraging GPUs for resource intensive tasks due to its seamless support‬
‭for tensor operations on GPUs. It enables efficient model loading and execution by‬
‭transferring both models and input tensors to the GPU, drastically speeding up‬
‭computations.‬

‭A. Install Torch with Cuda Support‬

‭pip‬‭install‬‭torch‬‭torchvision‬‭torchaudio‬‭--index-url‬
‭https://download.pytorch.org/whl/cu117‬

‭2. Installation of the requirements‬

‭All the necessary python libraries can be installed by running the following command‬

‭pip install fair-sense-ai‬

‭FairSense AI makes use of‬ ‭local inference‬‭with LLMs,‬‭tailored for bias analysis. It efficiently‬
‭processes text/image, analyzes text/image provided by the user for bias and offers‬
‭recommendations on mitigating bias for more fair and inclusive content.‬

‭Local Inference in FairSense AI‬
‭The tool identifies the system specification and defines the runtime based on the system.‬
‭The script provides a complete platform for analyzing biases in textual and image data,‬
‭generating AI governance insights, and visualizing AI safety risks. It uses advanced AI‬
‭models for analysis and Gradio for an interactive user interface.‬

‭The‬‭FairsenseGPURuntime‬‭is designed to enable GPU-based‬‭execution of text generation‬
‭tasks using a Hugging Face language model. It leverages the computational power of GPUs‬
‭for faster and more efficient inference.‬

‭Running the file in GPU system‬
‭run the fairsenseai.py file‬

‭It can be observed that the models are loaded into the GPU with the use of cuda.‬

https://download.pytorch.org/whl/cu117

‭Executing the file launches gradio interface for FairSense AI which can be accessed using the‬
‭public URL provided‬

‭The‬‭FairsenseCPURuntime‬‭is designed for executing‬‭text generation tasks on a CPU. It‬
‭interfaces with Ollama to generate responses efficiently without requiring a GPU.‬

‭Running the file in CPU system‬
‭run the fairsenseai.py file‬

‭It can be observed that the models are loaded into the CPU now.‬

‭Executing the file launches gradio interface for FairSense AI which can be accessed using the‬
‭public URL provided‬

‭Summary‬
‭FairSense AI makes use of local LLMs with the ability to support both CPU and GPU‬
‭devices and aids in efficient analysis of bias for text and images. It processes the data‬
‭(text/image), uses local LLM to analyze for bias and highlights any bias present it‬
‭through optimized inference for local runtime.‬‭Prepared‬‭By‬

‭●‬ ‭Name‬‭:‬‭Shaina Raza, PhD‬‭shaina.raza@vectorinstitute.ai‬
‭Marcelo Lotif‬‭marcelo.lotif@vectorinstitute.ai‬
‭Mukund Sayeeganesh Chettiar‬‭mukund.chettiar@vectorinstitute.ai‬

‭●‬ ‭Affiliation‬‭: Vector Institute for Artificial Intelligence‬

‭This tutorial is presented for practical use based on existing methods and open resources‬
‭(llama.cpp, ollama) for efficient evaluation and optimization of LLMs. It incorporates‬
‭strategies for reducing carbon emissions and computational costs while highlighting use‬
‭cases for secure local inference. Special thanks to the llama.cpp, ollama contributors whose‬
‭work inspired this adaptation.‬

mailto:shaina.raza@vectorinstitute.ai
mailto:shaina.raza@vectorinstitute.ai
mailto:shaina.raza@vectorinstitute.ai

