Developer's Guide: Setting up & Running Fairsense Al on Local

Fairsense Al is built keeping in mind the sustainability practices for efficient LLM inference
locally with the support for both CPU & GPU based systems.

Use of Local LLMs

Running large language models (LLMs) locally provides significant advantages, whether for
research, experimentation, or building advanced applications. However, the process of
configuring the necessary environment and setting up LLMs on local systems is often
complex and resource intensive.

Why Use Local LLMs?

Privacy: Keep your data secure by running models locally.

Speed: No cloud dependencies mean faster responses.
Customization: Fine-tune models for your specific needs.

Cost Efficiency: Save on cloud service fees.

Offline Access: Use models without an internet connection.
Hardware Optimization: Efficiently use your local system resources.

Steps to Set up Development Environment

1. Prerequisites

Before starting, ensure you have the following:

- A computer with disk space and RAM for model files.
- Python 3.9 or later installed.

2. Setting of Inference For CPU
For CPU systems, we make use of Ollama, a tool wrapped around llama.cpp, which simplifies
using LLMs locally with an easy-to-use interface.

A. Download Ollama

Ollama works on macOS, Windows, and Linux. Choose one of these options to
download it:

- Visit the Ollama GitHub page for installation instructions:
https://github.com/ollama

- Go to Ollama’s official website and download the installer for macOS or Windows:
https://ollama.com

B. Install Ollama
Use Python's package manager, pip, to install Ollama. Open a terminal (or command
prompt) and run:

pip install ollama

https://ollama.com/
https://github.com/ggerganov/llama.cpp
https://ollama.com/

. Tip: Use a virtual environment like Miniconda for better package management.

=] Anaconda Prompt (minicondz X + v

(base) C:\Users\shain>pip install ollama

Requirement already satisfied: ollama in c:\users\shain\miniconda3\lib\site-packages (©.3.3)

Requirement already satisfied: httpx<0.28.0,>=0.27.0 in c:\users\shain\miniconda3\lib\site-packages (from ollama) (0.27.
0)

Requirement already satisfied: anyio in c:\users\shain\miniconda3\lib\site-packages (from httpx<0.28.0,>=0.27.0->o0llama)
(3.6.2)

Requirement already satisfied: idna in c:\users\shain\miniconda3\lib\site-packages (from httpx<0.28.0,>=0.27.0->ollama)
(3.10)

Requirement already satisfied: httpcore==1.* in c:\users\shain\miniconda3\lib\site-packages (from httpx<0.28.0,6>=0.27.0-

>ollama) (1.0.5)

C. Downloading Pre-Trained Models
Ollama gives you access to various pre-trained LLMs. To download a model, run:

ollama pull <model-name>

Example: The current version (v0.8.2) of FairSense Al makes use of Llama 3.2 model
with 3B parameters

ollama pull llama3.2

=] Anaconda Prompt (minicondz X + v

(base) C:\Users\shain>ollama pull 1lama3.2:1b
pulling manifest

pulling 74701a8c35¢6... 9% | | 1.3 GB/1.3 GB 4.6 MB/s

D. Optional: Start the Ollama Server
To enable local interaction with the model, start the Ollama server:

ollama serve

E. Query the Model
Ask the model questions using the ollama query command. For example:

ollama query llama3.2 "What are the benefits of using local LLMs?"

Skip Step D and E, if you only want to download and use models in FairSense Al
Tool.

3. Setting of Inference For GPU

Torch is integral for leveraging GPUs for resource intensive tasks due to its seamless support
for tensor operations on GPUs. It enables efficient model loading and execution by
transferring both models and input tensors to the GPU, drastically speeding up
computations.

A. Install Torch with Cuda Support
pip install torch torchvision torchaudio --index-url
https://download.pytorch.org/whl/cu117

2. Installation of the requirements
All the necessary python libraries can be installed by running the following command

pip install fair-sense-ai

FairSense Al makes use of local inference with LLMs, tailored for bias analysis. It efficiently
processes text/image, analyzes text/image provided by the user for bias and offers
recommendations on mitigating bias for more fair and inclusive content.

Local Inference in FairSense Al

The tool identifies the system specification and defines the runtime based on the system.
The script provides a complete platform for analyzing biases in textual and image data,
generating Al governance insights, and visualizing Al safety risks. It uses advanced Al
models for analysis and Gradio for an interactive user interface.

The FairsenseGPURuntime is designed to enable GPU-based execution of text generation
tasks using a Hugging Face language model. It leverages the computational power of GPUs
for faster and more efficient inference.

Running the file in GPU system
run the fairsenseai.py file

(venv) mchettiar@gpu@38:~/fairsense/fair-sense-ai$ python fairsenseai.py

Starting FairsenseRuntime with file system access

Loading models. ..

Device set to use cuda:@

Models loaded successfully.

The new embeddings will be initialized from a multivariate normal distribution that has old embeddings' mean and covariance. As described in this a
ticle: https://nlp.stanford.edu/~johnhew/vocab-expansion.html. To disable this, use ‘mean_resizing=False’
INFO: httpx:HTTP Request: GET https://api.gradio.app/pkg-version "HTTP/1.1 200 OK"

* Running on local URL: http://127.0.0.1:7860

INFO:httpx:HTTP Request: GET http://127.0 7860/gradio_api/startup-events "HTTP/1.1 200 OK"

INFO: httpx:HTTP Request: HEAD http://127. 1:7860/ “HTTP/1.1 200 OK"

INFO:httpx:HTTP Request: GET https://api.gradio.app/v3/tunnel-request "HTTP/1.1 200 OK"

* Running on public URL: https://403@0b9c1545ac7a4e8.gradio.live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run ‘gradio deploy' from the terminal in the working directory to
ﬁeploy to Hugging Face Spaces (https://huggingface.co/spaces)

It can be observed that the models are loaded into the GPU with the use of cuda.

https://download.pytorch.org/whl/cu117

Executing the file launches gradio interface for FairSense Al which can be accessed using the
public URL provided

<« G @ % 4030b9ci5a5ac7ades.gradio.live ¥ ¢ O g 0

Cs Vector Institute B8

Fairsense-Al

Fairsense-Al is an Al-driven platform for analyzing bias in textual and visual content. It is designed to promote transparency, fairness, and equity in Al systems. The platform
is built to align with the principles of responsible Al, with a particular focus on fairness, bias, and sustainability.

Text Analysis: Detect biases in text, highlight problematic terms, and provide actionable feedback
Image Analysis: Evaluate images for embedded text and captions for bias
Batch Processing: Analyze large datasets of text or images efficiently.

Al Governance: Gain insights into ethical Al practices and responsible deployment.

" TextAnalysis [iImageAnalysis [BatchText CSVAnalysis 7 Batchimage Analysis W Al Governanceand Safety il Al Safety Risks Dashboard [About Fairsense-Al

Text Input 2 Use Summarizer? Analyze

Try some examples

Some people say that women are not suitable for leadership roles. Our hiring process is fair and unbiased, but we prefer male candidates for their intellect level

The FairsenseCPURuntime is designed for executing text generation tasks on a CPU. It
interfaces with Ollama to generate responses efficiently without requiring a GPU.

Running the file in CPU system
run the fairsenseai.py file

(env) mukundchettiar@VI-CO2GICFEML7H fairsenseai % python fairsenseai.py

Loading models...

Device set to use cpu

Models loaded successfully.

INFO:httpx:HTTP Request: GET https://api.gradio.app/pkg-version “HTTP/1.1 200 OK"

* Running on local URL: http://127.0.0.1:7860

INFO:httpx:HTTP Request: GET http://127.0.0.1:7860/gradio_api/startup—events "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: HEAD http://127.0.0.1:7860/ "HTTP/1.1 200 OK"

INFO:httpx:HTTP Request: GET https://api.gradio.app/v3/tunnel-request "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: GET https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_darwin_amd64 "HTTP/1.1 200 OK"
* Running on public URL: https://a2258d3db162aa68e2.gradio. live

This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run ‘gradio deploy' from the terminal in the work
ing directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)

It can be observed that the models are loaded into the CPU now.

Executing the file launches gradio interface for FairSense Al which can be accessed using the
public URL provided

C @ % a2258d3db162aab8e2.gradio.live b4 c O s 0

Cs Vector Institute 5§

Fairsense-Al

Fairsense-Al is an Al-driven platform for analyzing bias in textual and visual content. It is designed to promote transparency, fairness, and equity in Al systems. The platform
is built to align with the principles of responsible Al, with a particular focus on fairness, bias, and sustainability.

Text Analysis: Detect biases in text, highlight problematic terms, and provide actionable feedback.
Image Analysis: Evaluate images for embedded text and captions for bias.
Batch Processing: Analyze large datasets of text or images efficiently.

Al Governance: Gain insights into ethical Al practices and responsible deployment.

* Text Analys =l Image Analysis [Batch Text CSV Analysis Batch Image Analysis T Al Governance and Safety ul Al Safety Risks Dashboard Il About Fairsense-Al
Text Input 9 Use Summarizer? Analyze

Try some examples
Some people say that women are not suitable for leadership roles. Our hiring process is fair and unbiased, but we prefer male candidates for their intellect level.

Summary

FairSense Al makes use of local LLMs with the ability to support both CPU and GPU
devices and aids in efficient analysis of bias for text and images. It processes the data
(text/image), uses local LLM to analyze for bias and highlights any bias present it
through optimized inference for local runtime.Prepared By

e Name: Shaina Raza, PhD shaina.raza@vectorinstitute.ai
Marcelo Lotif marcelo.lotif@vectorinstitute.ai

Mukund Sayeeganesh Chettiar mukund.chettiar@vectorinstitute.ai
o Affiliation: Vector Institute for Artificial Intelligence

This tutorial is presented for practical use based on existing methods and open resources
(llama.cpp, ollama) for efficient evaluation and optimization of LLMs. It incorporates
strategies for reducing carbon emissions and computational costs while highlighting use
cases for secure local inference. Special thanks to the llama.cpp, ollama contributors whose
work inspired this adaptation.

mailto:shaina.raza@vectorinstitute.ai
mailto:shaina.raza@vectorinstitute.ai
mailto:shaina.raza@vectorinstitute.ai

